Dr Amal Medhi
Associate Professor (Physics)
  +91 (0)471 - 2778152
  YW1lZGhpQGlpc2VydHZtLmFjLmlu
  1. Fermionic Superfluid from a Bilayer Band Insulator in an Optical Lattice. Y. Prasad, A. Medhi, and Vijay B. Shenoy. Phys. Rev. Lett (under review). (arXiv:1202.3863v1)
  2. Sensory organ like response determines the magnetism of zigzag-edged honeycomb nanoribbons. S. Bhowmick, A. Medhi, and Vijay B. Shenoy. Phys. Rev. B 87, 085412 (2013).
  3. Continuum Theory of Edge States of Topological Insulators: Variational Principle and Boundary Conditions. A. Medhi and Vijay B.~Shenoy. J. Phys.: Condens. Matter 24, 355001 (2012).
  4. Synchronous and Asynchronous Mott Transitions in Topological Insulator Ribbons. A. Medhi, Vijay B. Shenoy, and H. R. Krishnamurthy. Phys. Rev. B 85, 235449 (2012).
  5. Importance of interlayer pair tunneling: A variational perspective. A. Medhi and S. Basu. Physica C 471, 1 (2011).
  6. Phase diagram for a t-J bilayer: role of interlayer couplings. A. Medhi, S. Basu, and C. Kadolkar. Eur. Phys. J. B 72, 583 (2009).
  7. Coexistence of magnetism and superconductivity in a t-J bilayer. A. Medhi, S. Basu, and C. Kadolkar. Phys. Rev. B 76, 235122 (2007).
  8. Nonmagnetic impurities in a two-leg Hubbard ladder. A. Medhi, S. Basu, and C. Kadolkar.. J. Appl Phys 101, 09D504 (2007).
  9. Stability of the Gutzwiller projected BCS wavefunction in t-J bilayer: A Variational Monte Carlo study. A. Medhi, S. Basu, and C. Kadolkar. Physica C 451, 13 (2007).
  10. Quantum Monte Carlo study of the Hubbard model doped with nonmagnetic impurities. A. Medhi, S. Basu, and C. Kadolkar. Physica B 378, 315 (2006).