
Chapter 4

Evolution equations

4.1 Introduction

The purpose of this chapter is to introduce some existence and regularity results for linear
evolution equations. We consider equations of the form

z′ = Az + f, z(0) = z0. (4.1.1)

In this setting A is an unbounded operator in a reflexive Banach space Z, with domain D(A)
dense in Z. We suppose thatA is the infinitesimal generator of a strongly continuous semigroup
on Z. This semigroup will be denoted by (etA)t≥0. In section 4.2, we study the weak solutions
to equation (4.1.1) in Lp(0, T ;Z). For application to boundary control problems, we have to
extend the notion of solutions to the case where f ∈ Lp(0, T ; (D(A∗))′). In that case we study
the solutions in Lp(0, T ; (D(A∗))′) (see section 4.3). Before studying equation (4.1.1), let us
now recall the Hille-Yosida theorem, which is very useful in applications.

Theorem 4.1.1 ([18, Chapter 1, Theorem 3.1], [8, Theorem 4.4.3]) An unbounded operator A
with domain D(A) in a Banach space Z is the infinitesimal generator of a strongly continuous
semigroup of contractions if and only if the two following conditions hold:

(i) A is a closed operator and D(A) = Z,

(ii) for all λ > 0, (λI −A) is a bijective operator from D(A) onto Z, (λI −A)−1 is a bounded
operator on Z, and

‖(λI − A)−1‖L(Z) ≤
1

λ
.

Theorem 4.1.2 Let (etA)t≥0 be a strongly continuous semigroup in Z with generator A. Then
there exists M ≥ 1 and ω ∈ R such that

‖etA‖L(Z) ≤Meωt for all t ≥ 0.

For all c ∈ R, A− cI is the infinitesimal generator of a strongly continuous semigroup on Z,
denoted by (et(A−cI))t≥0, which satisfies

‖et(A−cI)‖L(Z) ≤Me(ω−c)t for all t ≥ 0.

The first part of the theorem can be found in [2, Chapter 1, Corollary 2.1], or in [18, Chapter
1, Theorem 2.2]. The second statement follows from that et(A−cI) = e−ctetA.
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4.2 Weak solutions in Lp(0, T ;Z)

We recall the notion of weak solution to equation

z′ = Az + f, z(0) = z0, (4.2.2)

where z0 ∈ Z and f ∈ Lp(0, T ;Z), with 1 ≤ p <∞.

The adjoint operator of A is an unbounded operator in Z ′ defined by

D(A∗) = {ζ ∈ Z ′ | |〈ζ, Az〉| ≤ c‖z‖Z for all z ∈ D(A)}

and
〈A∗ζ, z〉 = 〈ζ, Az〉 for all ζ ∈ D(A∗) and all z ∈ D(A).

We know that the domain of A∗ is dense in Z ′.

Definition 4.2.1 A function z ∈ Lp(0, T ;Z), with 1 ≤ p <∞, is a weak solution to equation
(4.2.2) if for every ζ ∈ D(A∗), 〈z( · ), ζ〉 belongs to W 1,p(0, T ) and

d

dt
〈z(t), ζ〉 = 〈z(t), A∗ζ〉+ 〈f(t), ζ〉 in ]0, T [, 〈z(0), ζ〉 = 〈z0, ζ〉.

Theorem 4.2.1 ([2, Chapter 1, Proposition 3.2]) For every z0 ∈ Z and every f ∈ Lp(0, T ;Z),
with 1 ≤ p <∞, equation (4.2.2) admits a unique solution z(f, z0) ∈ Lp(0, T ;Z), this solution
belongs to C([0, T ];Z) and is defined by

z(t) = etAz0 +

∫ t

0

e(t−s)Af(s) ds.

The mapping (f, z0) 7→ z(f, z0) is linear and continuous from Lp(0, T ;Z)×Z into C([0, T ];Z).

The following regularity result is very useful.

Theorem 4.2.2 ([2, Chapter 1, Proposition 3.3]) If f ∈ C1([0, T ];Z) and z0 ∈ D(A), then
the solution z to equation (4.2.2) belongs to C([0, T ];D(A)) ∩ C1([0, T ];Z).

The adjoint equation for control problems associated with equation (4.2.2) will be of the form

−p′ = A∗p+ g, p(T ) = pT . (4.2.3)

This equation can be studied with the following theorem.

Theorem 4.2.3 ([18, Chapter 1, Corollary 10.6]) The family of operator ((etA)∗)t≥0 is a
strongly continuous semigroup on Z ′ with generator A∗. Since etA

∗
= (etA)∗, (etA

∗
)t≥0 is called

the adjoint semigroup of (etA)t≥0.

Due to this theorem and to Theorem 4.2.1, with a change of time variable, it can be proved
that if pT ∈ Z ′ and if g ∈ Lp(0, T ;Z ′), then equation (4.2.3) admits a unique weak solution
which is defined by

p(t) = e(T−t)A∗pT +

∫ T

t

e(s−t)A∗g(s) ds.
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4.3 Weak solutions in Lp(0, T ; (D(A∗))′)

When the data of equation (4.2.2) are not regular, it is possible to extend the notion of solution
by using duality arguments. It is the main objective of this section. For simplicity we suppose
that Z is a Hilbert space (the results can be extended to the case where Z is a reflexive Banach
space).

The imbeddings
D(A) ↪→ Z and D(A∗) ↪→ Z ′

are continuous and with dense range. Thus we have

D(A) ↪→ Z ↪→ (D(A∗))′.

Since the operator (A,D(A)) is the infinitesimal generator of a strongly continuous semigroup
on Z, from Theorem 4.2.3 it follows that (A∗, D(A∗)) is the infinitesimal generator of a semi-
group on Z ′. Let us denote by (S∗(t))t≥0 this semigroup.

Recall that the operator (A∗1, D(A∗1)) defined by

D(A∗1) = D((A∗)2), A∗1z = A∗z for all z ∈ D(A∗1),

is the infinitesimal generator of a semigroup on D(A∗) and that this semigroup (S∗1(t))t≥0

obeys S∗1(t)z = S∗(t)z for all z ∈ D(A∗).
From Theorem 4.2.3 we deduce that ((S∗1)∗(t))t≥0 is the semigroup on (D(A∗))′ generated

by (A∗1)∗. We are going to show that (S∗1)∗(t) is the continuous extension of S(t) to (D(A∗))′.
More precisely we have the following

Theorem 4.3.1 The adjoint of the unbounded operator (A∗1, D(A∗1)) in D(A∗), is the un-
bounded operator ((A∗1)∗, D((A∗1)∗)) on (D(A∗))′ defined by

D((A∗1)∗) = Z, 〈(A∗1)∗z, y〉 = 〈z, A∗1y〉 for all z ∈ Z and all y ∈ D(A∗1).

Moreover, (A∗1)∗z = Az for all z ∈ D(A). The semigroup ((S∗1)∗(t))t≥0 is the semigroup on
(D(A∗))′ generated by (A∗1)∗ and

(S∗1)∗(t)z = S(t)z for all z ∈ Z and all t ≥ 0.

Proof. Let us show that D((A∗1)∗) = Z. For all z ∈ Z and all y ∈ D(A∗1), we have

|〈z, A∗1y〉(D(A∗))′,D(A∗)| = |〈z, A∗1y〉Z,Z′| ≤ ‖z‖Z‖y‖D(A∗).

Consequently
Z ⊂ D((A∗1)∗). (4.3.4)

Let us show the reverse inclusion. Let z ∈ Z with z 6= 0, and let yz ∈ Z ′ be such that

‖z‖Z = supy∈Z′
〈z, y〉Z,Z′
‖y‖Z′

=
〈z, yz〉Z,Z′
‖yz‖Z′

.

We have

‖z‖Z =
〈z, (I − A∗1)(I − A∗1)−1yz〉Z,Z′

‖yz‖Z′
=
〈z, (I − A∗1)ζz〉Z,Z′
‖ζz‖D(A∗)
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with ζz = (I − A∗1)−1yz. We can take

ζ 7−→ ‖(I − A∗1)−1ζ‖Z′

as a norm on D(A∗). For such a choice (I − A∗1)−1 is an isometry from Z ′ to (D(A∗))′. Thus

supζ∈D(A∗)

〈z, (I − A∗1)ζ〉Z,Z′
‖ζ‖D(A∗)

= supy∈Z′
〈z, y〉Z,Z′
‖y‖Z′

.

Since

‖z‖D((A∗1)∗) = supζ∈D(A∗)

〈z, (I − A∗1)ζ〉Z,Z′
‖ζ‖D(A∗)

,

one has
‖z‖D((A∗1)∗) ≤ ‖z‖Z . (4.3.5)

The equality D((A∗1)∗) = Z follows from (4.3.4) and (4.3.5).

For all z ∈ D(A), and all y ∈ D(A∗1), we have

〈(A∗1)∗z, y〉 = 〈z, A∗1y〉 = 〈z, A∗y〉 = 〈Az, y〉.

Thus, (A∗1)∗z = Az for all z ∈ D(A).

From Theorem 4.2.3 we deduce that ((S∗1)∗(t))t≥0 is the semigroup on (D(A∗))′ generated by
(A∗1)∗. To prove that (S∗1)∗(t)z = S(t)z for all z ∈ Z and all t ≥ 0, it is sufficient to observe
that

〈(S∗1)∗(t)z, y〉 = 〈z, S∗1(t)y〉 = 〈z, S∗(t)y〉 = 〈S(t)z, y〉,
for all z ∈ Z, all y ∈ D(A∗), and all t ≥ 0.

Remark. Therefore we can extend the notion of solution for the equation (4.2.2) in the case
where x0 ∈ (D(A∗))′ and f ∈ Lp(0, T ; (D(A∗))′), by considering the equation

z′(t) = (A∗1)∗z(t) + f(t) dans (0, T ), z(0) = z0. (4.3.6)

It is a usual abuse of notation to replace A∗1 by A∗ and to write equation (4.3.6) in the form
(cf [2, page 160])

z′(t) = (A∗)∗z(t) + f(t) dans (0, T ), z(0) = z0. (4.3.7)

Since (A∗1)∗ is an extension of the operator A, sometimes equations (4.3.6) or (4.3.7) are written
in the form (4.2.2) even if z0 ∈ (D(A∗))′ and f ∈ Lp(0, T ; (D(A∗))′).

Theorem 4.3.2 For every z0 ∈ (D(A∗))′ and every f ∈ Lp(0, T ; (D(A∗))′), with 1 ≤ p <∞,
equation (4.3.6) admits a unique solution z(f, z0) ∈ Lp(0, T ; (D(A∗))′), this solution belongs
to C([0, T ]; (D(A∗))′) and is defined by

z(t) = et(A
∗
1)∗z0 +

∫ t

0

e(t−s)(A∗1)∗f(s) ds.

The mapping (f, z0) 7→ z(f, z0) is linear and continuous from Lp(0, T ; (D(A∗))′) × (D(A∗))′

into C([0, T ]; (D(A∗))′).
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Proof. The theorem is a direct consequence of Theorems 4.3.1 and 4.2.1.

For simplicity in the notation, we often write etA in place of et(A
∗
1)∗ , or A in place of (A∗1)∗.

We often establish identities by using density arguments. The following regularity result will
be useful to establish properties for weak solutions to equation (4.3.4).

Theorem 4.3.3 If f belongs to H1(0, T ; (D(A∗))′) and z0 belongs to Z, then the solution
z(f, z0) to equation (4.3.4) belongs to C1([0, T ]; (D(A∗))′) ∩ C([0, T ];Z).

Proof. See [2, Chapter 3, Theorem 1.1].

4.4 Analytic semigroups

Let (A,D(A)) be the infinitesimal generator of a strongly continuous semigroup on a Hilbert
space Z. The resolvent set ρ(A) is the set of all complex numbers λ such that the operator
(λI − A) ∈ L(D(A), Z) has a bounded inverse in Z. Since Z is a Hilbert space, and A is a
closed operator (because A is the infinitesimal generator of a strongly continuous semigroup),
we have the following characterization of ρ(A):

λ ∈ ρ(A) if and only if R(λ,A) = (λI − A)−1 exists and Im(λI − A) = Z.

The resolvent set of A always contains a real half-line [a,∞) (see [2, Chapter 1, Proposition
2.2 and Corollary 2.2]).

4.4.1 Fractional powers of infinitesimal generators

We follows the lines of [5, Section 7.4]. Let (etA)t≥0 be a strongly continuous semigroup on Z
with infinitesimal generator A satisfying

‖etA‖L(Z) ≤Me−ct for all t ≥ 0, (4.4.8)

with c > 0. We can define fractional powers of (−A) by

(−A)−αz =
1

Γ(α)

∫ ∞
0

tα−1etAz dt

for some α > 0 and all z ∈ Z. The operator (−A)−α obviously belongs to L(Z). For 0 ≤ α ≤ 1,
we set

(−A)α = (−A)(−A)α−1.

The domain of (−A)α = (−A)(−A)α−1 is defined by D((−A)α) = {z ∈ Z | (−A)α−1z ∈
D(A)}.

4.4.2 Analytic semigroups

Different equivalent definitions of an analytic semigroup can be given.
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Definition 4.4.1 Let (etA)t≥0 be a strongly continuous semigroup on Z, with infinitesimal
generator A. The semigroup (etA)t≥0 is analytic if there exists a sector

Σa,π
2

+δ = {λ ∈ C | |arg(λ− a)| < π

2
+ δ}

with 0 < δ < π
2
, such that Σa,π

2
+δ ⊂ ρ(A), and

‖(λI − A)−1‖ ≤ M

|λ− a|
for all λ ∈ Σa,π

2
+δ.

It can be proved that the semigroup (etA)t≥0 satisfies the conditions of definition 4.4.1 if and
only if (etA)t≥0 can be extended to a function λ 7→ eλA, where eλA ∈ L(Z), analytic in the
sector

Σa,δ = {λ ∈ C | |arg(λ− a)| < δ},

and strongly continuous in
{λ ∈ C | |arg(λ− a)| ≤ δ}.

Such a result can be find in a slightly different form in [2, Chapter 1, Theorem 2.1]. A theorem
very useful for studying regularity of solutions to evolution equations is stated below.

Theorem 4.4.1 ([18, Chapter 2, Theorem 6.13]) Let (etA)t≥0 be a continuous semigroup with
infinitesimal generator A. Suppose that (4.4.8) is satisfied for some c > 0. Then etAZ ⊂
D((−A)α), (−A)αetA ∈ L(Z) for all t > 0, and, for all 0 ≤ α ≤ 1, there exists k > 0 and
C(α) such that

‖(−A)αetA‖L(Z) ≤ C(α)t−αe−kt for all t ≥ 0. (4.4.9)

A very simple criterion of analitycity is known in the case of real Hilbert spaces.

Theorem 4.4.2 ([2, Chapter 1, Proposition 2.11]) If A is a selfadjoint operator on a real
Hilbert space Z, and if

(Az, z) ≤ 0 for all z ∈ D(A),

then A generates an analytic semigroup of contractions on Z.



Chapter 5

Control of the heat equation

5.1 Introduction

We begin with distributed controls (section 5.2). Solutions of the heat equation are de-
fined via the semigroup theory, but we explain how we can recover regularity results in
W (0, T ;H1

0 (Ω), H−1(Ω)) (Theorem 5.2.3). Since we study optimal control problems of evolu-
tion equations for the first time, we carefully explain how we can calculate the gradient, with
respect to the control variable, of a functional depending of the state variable via the adjoint
state method. The case of Neumann boundary controls is studied in section 5.3. Estimates in
W (0, T ;H1(Ω), (H1(Ω))′) are obtained by an approximation process, using the Neumann op-
erator (see the proof of Theorem 5.3.6). Section 5.4 deals with Dirichlet boundary controls. In
that case the solutions do not belong to C([0, T ];L2(Ω)), but only to C([0, T ];H−1(Ω)). We
carefully study control problems for functionals involving observations in C([0, T ];H−1(Ω))
(see section 5.4.2).

We only study problems without control constraints. But the extension of existence results
and optimality conditions to problems with control constraints is straightforward.

5.2 Distributed control

Let Ω be a bounded domain in RN , with a boundary Γ of class C2. Let T > 0, setQ = Ω×(0, T )
and Σ = Γ× (0, T ). We consider the heat equation with a distributed control

∂z

∂t
−∆z = f + χωu in Q, z = 0 on Σ, z(x, 0) = z0 in Ω. (5.2.1)

The function f is a given source of temperature, χω is the characteristic function of ω, ω is an
open subset of Ω, and the function u is a control variable. We consider the control problem

(P1) inf{J1(z, u) | (z, u) ∈ C([0, T ];L2(Ω))× L2(0, T ;L2(ω)), (z, u) satisfies (5.2.1)},

where

J1(z, u) =
1

2

∫
Q

(z − zd)2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Q

χωu
2,

and β > 0. In this section, we assume that f ∈ L2(Q) and that zd ∈ C([0, T ];L2(Ω)).

47
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Before studying the above control problem, we first recall some results useful for the equa-
tion

∂z

∂t
−∆z = φ in Q, z = 0 on Σ, z(x, 0) = z0(x) in Ω. (5.2.2)

Theorem 5.2.1 Set Z = L2(Ω), D(A) = H2(Ω)∩H1
0 (Ω), Au = ∆u. The operator (A,D(A))

is the infinitesimal generator of a strongly continuous semigroup of contractions on L2(Ω).

Proof. The proof relies on the Hille-Yosida theorem and on regularity properties for solutions
to the Laplace equation.

(i) Prove that A is a closed operator. Let (zn)n be a sequence in D(A) converging to some z
in L2(Ω). Suppose that (∆zn)n converges to some f in L2(Ω). We necessarily have ∆z = f
in the sense of distributions in Ω. Due to Theorem 3.2.1, we have ‖zn− zm‖H2(Ω) ≤ C‖∆zn−
∆zm‖L2(Ω) . This means that (zn)n is a Cauchy sequence in H2(Ω). Hence z ∈ H2(Ω)∩H1

0 (Ω).
The first condition of Theorem 4.1.1 is satisfied.

(ii) Let λ > 0 and f ∈ L2(Ω). It is clear that (λI −A) is invertible in L2(Ω), and (λI −A)−1f
is the solution z to the equation

λz −∆z = f in Ω, z = 0 on Γ.

We know that z ∈ H2(Ω) ∩H1
0 (Ω) and

λ

∫
Ω

z2 +

∫
Ω

|∇z|2 =

∫
Ω

fz.

Thus we have

‖z‖L2(Ω) ≤
1

λ
‖f‖L2(Ω),

and the proof is complete.

Equation (5.2.2) may be rewritten in the form of an evolution equation:

z′ − Az = φ in ]0, T [, z(0) = z0. (5.2.3)

We can easily verify that D(A∗) = D(A) and A∗ = A, that is A is selfadjoint. Recall that
z ∈ L2(0, T ;L2(Ω)) is a weak solution to equation (5.2.3) if for all ζ ∈ H2(Ω) ∩ H1

0 (Ω) the
mapping t 7→ 〈z(t), ζ〉 belongs to H1(0, T ), 〈z(0), ζ〉 = 〈z0, ζ〉, and

d

dt
〈z(t), ζ〉 = 〈z(t), Aζ〉+ 〈φ, ζ〉.

Theorem 5.2.2 (i) For every φ ∈ L2(Q) and every z0 ∈ L2(Ω), equation (5.2.2) admits a
unique weak solution z(φ, z0) in L2(0, T ;L2(Ω)), moreover the operator is linear and continuous
from L2(Q)× L2(Ω) into W (0, T ;H1

0 (Ω), H−1(Ω)).

(ii) The operator is also continuous from L2(Q) × H1
0 (Ω) into L2(0, T ;H2(Ω) ∩ H1

0 (Ω)) ∩
H1(0, T ;L2(Ω)).

Comments. Recall that

W (0, T ;H1
0 (Ω), H−1(Ω)) =

{
z ∈ L2(0, T ;H1

0 (Ω)) | dz
dt
∈ L2(0, T ;H−1(Ω))

}
.
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We say that dz
dt
∈ L2(0, T ;H−1(Ω)) if

‖ d
dt
〈z(t), ζ〉‖L2(0,T ) ≤ C‖ζ‖H1

0 (Ω), for all ζ ∈ H1
0 (Ω).

Proof of Theorem 5.2.2.

(i) Due to Theorem 5.2.1 and Theorem 4.2.1, we can prove that the operator (φ, z0) 7→ z(φ, z0)
is continuous from L2(Q)× L2(Ω) into C([0, T ];L2(Ω)). To prove that the solution z belongs
to W (0, T ;H1

0 (Ω), H−1(Ω)), we can use a density argument. Suppose that φ ∈ C1([0, T ];Z)
and that z0 ∈ D(A). Then z belongs to C([0, T ];D(A)) ∩ C1([0, T ];Z) (Theorem 4.2.2). In
that case we can multiply equation (5.2.2) by z, and with integration by parts and a Green
formula, we obtain ∫

Ω

|z(T )|2 + 2

∫ T

0

∫
Ω

|∇z|2 ≤ 2

∫ T

0

∫
Ω

φz +

∫
Ω

|z0|2

≤ 2‖φ‖L2(Q)‖z‖L2(Q) + ‖z0‖2
L2(Ω).

With Poincaré’s inequality ‖z‖L2(Ω) ≤ Cp‖∇z‖L2(Ω), and Young’ inequality we deduce∫ T

0

∫
Ω

|∇z|2 ≤ Cp‖φ‖2
L2(Q) + ‖z0‖2

L2(Ω).

Therefore the operator (φ, z0) 7→ z(φ, z0) is continuous from L2(Q)×L2(Ω) into L2(0, T ;H1
0 (Ω)).

Next, by using the equation and the regularity z ∈ L2(0, T ;H1
0 (Ω)), we get

d

dt
〈z(t), ζ〉 = 〈z(t), Aζ〉+ 〈φ, ζ〉 = −

∫
Ω

∇z∇ζ +

∫
Ω

φζ.

From which it follows that

‖ d
dt
〈z(t), ζ〉‖L2(0,T ) ≤ ‖z‖L2(0,T ;H1

0 (Ω))‖ζ‖H1
0 (Ω) + ‖φ‖L2(Ω)‖ζ‖L2(Ω)

≤ max(Cp, 1)
(
‖z‖L2(0,T ;H1

0 (Ω)) + ‖φ‖L2(Ω)

)
‖ζ‖H1

0 (Ω),

for all ζ ∈ H1
0 (Ω). Thus dz

dt
belongs to L2(0, T ;H−1(Ω)). The first part of the Theorem is

proved.

(ii) The second regularity result is proved in [13], [7].

Since the solution z(f, u, z0) to equation (5.2.1) belongs to C([0, T ];L2(Ω)) (when u ∈ L2(0, T ;
L2(ω)), J1(z(f, u, z0), u) is well defined and is finite for any u ∈ L2(0, T ;L2(ω)). We first
assume that (P1) admits a unique solution (see Theorem 7.3.1, see also exercise 5.5.1). We
set F1(u) = J1(z(f, u, z0), u), and, as in the case of optimal control for elliptic equations, the
optimal solution (z(f, ū, z0), ū) to problem (P1) is characterized by the equation F ′1(ū) = 0.
To compute the gradient of F1 we have to consider adjoint equations of the form

−∂p
∂t
−∆p = g in Q, p = 0 on Σ, p(x, T ) = pT in Ω, (5.2.4)



50 CHAPTER 5. CONTROL OF THE HEAT EQUATION

with g ∈ L2(Q) and pT ∈ L2(Ω). It is well known that the backward heat equation is not well
posed. Due to the condition p(x, T ) = pT equation (5.2.4) is a terminal value problem, which
must be integrated backward in time. But equation (5.2.4) is not a backward heat equation
because we have − ∂p

∂t
−∆p = g and not ∂p

∂t
−∆p = g (as in the case of the backward heat

equation). Let us explain why the equation is well posed. If p is a solution of (5.2.4) and if
we set w(t) = p(T − t), we can check, at least formally, that w is the solution of

∂w

∂t
−∆w = g(x, T − t) in Q, w = 0 on Σ, w(x, 0) = pT in Ω. (5.2.5)

Since equation (5.2.5) is well posed, equation (5.2.4) is also well posed even if (5.2.4) is
a terminal value problem. In particular equation (5.2.4) admits a unique weak solution in
L2(0, T ;L2(Ω)), and this solution belongs to W (0, T ;H1

0 (Ω), H−1(Ω)). To obtain the expres-
sion of the gradient of F1 we need a Green formula which is stated below.

Theorem 5.2.3 Suppose that φ ∈ L2(Q), g ∈ L2(Q), and pT ∈ L2(Ω). Then the solution z
of equation

∂z

∂t
−∆z = φ in Q, z = 0 on Σ, z(x, 0) = 0 in Ω,

and the solution p of (5.2.4) satisfy the following formula∫
Q

φ p =

∫
Q

z g +

∫
Ω

z(T )pT . (5.2.6)

Proof. If pT ∈ H1
0 (Ω), due to Theorem 5.2.2, z and p belong to L2(0, T ;D(A)))∩H1(0, T ;L2(Ω)).

In that case, with the Green formula we have∫
Ω

−∆z(t)p(t) dx =

∫
Ω

−∆p(t)z(t) dx

for almost every t ∈ [0, T ], and∫ T

0

∫
Ω

∂z

∂t
p = −

∫ T

0

∫
Ω

∂p

∂t
z +

∫
Ω

z(T )pT .

Thus formula (5.2.6) is established in the case when pT ∈ H1
0 (Ω) (Theorem 5.2.2 (ii)). If (pTn)n

is a sequence in H1
0 (Ω) converging to pT in L2(Ω), due to Theorem 5.2.2, (pn)n, where pn is the

solution to equation (5.2.4) corresponding to pTn, converges to p in W (0, T ;H1
0 (Ω), H−1(Ω))

when n tends to infinity. Thus, in the case when pT ∈ L2(Ω), formula (5.2.6) can be deduced
by passing to the limit in the formula satisfied by pn.

The gradient of F1. Let (z(f, ū, z0), ū) = (z̄, ū) be the solution to problem (P1). By a direct
calculation we obtain

F1(ū+ λu)− F1(ū) =
1

2

∫
Q

(zλ − z̄)(zλ + z̄ − 2zd)

+
1

2

∫
Ω

(zλ(T )− z̄(T ))(zλ(T ) + z̄(T )− 2zd(T )) +
β

2

∫ T

0

∫
ω

(2λuū+ λ2u2),
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where zλ = z(f, ū+ λu, z0). The function wλ = zλ − z̄ is the solution to the equation

∂w

∂t
−∆w = λχωu in Q, z = 0 on Σ, w(x, 0) = 0 in Ω.

Due to Theorem 5.2.2 we have

‖wλ‖W (0,T ;H1
0 (Ω),H−1(Ω)) ≤ C|λ|‖u‖L2(0,T ;L2(ω)).

Thus the sequence (zλ)λ converges to z̄ in W (0, T ;H1
0 (Ω), H−1(Ω)) when λ tends to zero. Set

wu = 1
λ
wλ, the function wu is the solution to the equation

∂w

∂t
−∆w = χωu in Q, z = 0 on Σ, w(x, 0) = 0 in Ω. (5.2.7)

Dividing F1(ū+ λu)− F1(ū) by λ, and passing to the limit when λ tends to zero, we obtain:

F ′1(ū)u =

∫
Q

(z̄ − zd)wu +

∫
Ω

(z̄(T )− zd(T ))wu(T ) +

∫ T

0

∫
ω

βuū.

To derive the expression of F ′1(ū) we introduce the adjoint equation

−∂p
∂t
−∆p = z̄ − zd in Q, p = 0 on Σ, p(x, T ) = z̄(T )− zd(T ) in Ω. (5.2.8)

With formula (5.2.6) applied to p and wu we have∫
Q

(z̄ − zd)wu +

∫
Ω

(z̄(T )− zd(T ))wu(T ) =

∫ T

0

∫
ω

χωup.

Hence F ′1(ū) = p|ω×(0,T ) + βū , where p is the solution to equation (5.2.8).

Theorem 5.2.4 (i) If (z̄, ū) is the solution to (P1) then ū = − 1
β
p|ω×(0,T ), where p is the

solution to equation (5.2.8).

(ii) Conversely, if a pair (z̃, p̃) ∈ W (0, T ;H1
0 (Ω), H−1(Ω))×W (0, T ;H1

0 (Ω), H−1(Ω)) obeys the
system

∂z

∂t
−∆z = f − 1

β
χωp in Q, p = 0 on Σ, z(x, 0) = z̄0 in Ω,

−∂p
∂t
−∆p = z̄ − zd in Q, p = 0 on Σ, p(x, 0) = z̄(T )− zd(T ) in Ω,

(5.2.9)

then the pair (z̃,− 1
β
p̃) is the optimal solution to problem (P1).

Proof. (i) The necessary optimality condition is already proved.

(ii) The sufficient optimality condition can be proved with Theorem 2.2.3.

Comments. Before ending this section let us observe that equation (5.2.1) can be written in
the form

z′ = Az + f +Bu, z(0) = z0,

where B ∈ L(L2(Γ), L2(Ω)) is defined by Bu = χωu. Control problems governed by such
evolutions equations are studied in Chapter 7.
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5.3 Neumann boundary control

In this section, we study problems in which the control variable acts through a Neumann
boundary condition

∂z

∂t
−∆z = f in Q,

∂z

∂n
= u on Σ, z(x, 0) = z0 in Ω. (5.3.10)

Theorem 5.3.1 Set Z = L2(Ω), D(A) = {z ∈ H2(Ω) | ∂z
∂n

= 0}, Az = ∆z. The operator
(A,D(A)) is the infinitesimal generator of a strongly continuous semigroup of contractions in
L2(Ω).

Proof. The proof still relies on the Hille-Yosida theorem. It is very similar to the proof of
Theorem 5.2.1 and is left to the reader.

The operator (A,D(A)) is selfadjoint in Z. Equation

∂z

∂t
−∆z = f in Q,

∂z

∂n
= 0 on Σ, z(x, 0) = z0 in Ω, (5.3.11)

may be written in the form
z′ = Az + f, z(0) = z0. (5.3.12)

A function z ∈ L2(0, T ;L2(Ω)) is a weak solution to equation (5.3.12) if for all ζ ∈ D(A) the
mapping t 7→ 〈z(t), ζ〉 belongs to H1(0, T ), 〈z(0), ζ〉 = 〈z0, ζ〉, and

d

dt

∫
Ω

z(t)ζ = 〈z, Aζ〉+ 〈f, ζ〉 =

∫
Ω

z(t)∆ζ +

∫
Ω

f(t)ζ.

Theorem 5.3.2 For every φ ∈ L2(Q) and every z0 ∈ L2(Ω), equation (5.3.11) admits a
unique weak solution z(φ, z0) in L2(0, T ;L2(Ω)), moreover the operator

(φ, z0) 7→ z(φ, z0)

is linear and continuous from L2(Q)× L2(Ω) into W (0, T ;H1(Ω), (H1(Ω))′).

Recall that

W (0, T ;H1(Ω), (H1(Ω))′) =
{
z ∈ L2(0, T ;H1(Ω)) | dz

dt
∈ L2(0, T ; (H1(Ω))′)

}
.

Proof. The existence in C([0, T ];L2(Ω)) follows from Theorem 5.3.1. The regularity in
W (0, T ;H1(Ω), (H1(Ω))′) can be proved as for Theorem 5.2.2.

Similarly we would like to say that a function z ∈ L2(0, T ;L2(Ω)) is a weak solution to equation
(5.3.10) if for all ζ ∈ D(A) the mapping t 7→ 〈z(t), ζ〉 belongs to H1(0, T ), 〈z(0), ζ〉 = 〈z0, ζ〉,
and

d

dt

∫
Ω

z(t)ζ =

∫
Ω

z(t)∆ζ +

∫
Ω

fζ +

∫
Γ

uζ.

Unfortunately the mapping ζ 7→
∫

Γ
uζ is not an element of L2(0, T ;L2(Ω)), it only belongs

to L2(0, T ; (H1(Ω))′). One way to study equation (5.3.10) consists in using (A∗1)∗ (see Chapter
4), the extension of A to (D(A∗))′ = (D(A))′ (A is selfadjoint). We can directly improve this
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result in the following way. We set Ẑ = (H1(Ω))′. We endow (H1(Ω))′ with the dual norm of
the H1-norm. We can check that the corresponding inner product in (H1(Ω))′ is defined by(

z, ζ
)

(H1(Ω))′
=

∫
Ω

z(−∆ + I)−1ζ =

∫
Ω

(−∆ + I)−1z ζ,

where (−∆ + I)−1ζ is the function w ∈ H1(Ω) obeying

−∆w + w = ζ in Ω,
∂w

∂n
= 0 on Γ.

We define the unbounded operator Â in (H1(Ω))′ by D(Â) = H1(Ω), and

〈Âz, ζ〉(H1(Ω))′,H1(Ω) = −
∫

Ω

∇z∇ζ =
(
Âz, ζ

)
(H1(Ω))′

.

Theorem 5.3.3 The operator (Â,D(Â)) is the infinitesimal generator of a strongly continu-
ous semigroup of contractions in (H1(Ω))′.

Proof. The proof still relies on the Hille-Yosida theorem. It is more complicated than the
previous ones. It is left to the reader.

We write equation (5.3.10) in the form

z′ = Âz + f + û, z(0) = z0, (5.3.13)

where û ∈ L2(0, T ; (H1(Ω))′) is defined by û 7→
∫

Γ
uζ for all ζ ∈ H1(Ω). Due to Theo-

rem 5.3.3 equation (5.3.13), or equivalently equation (5.3.10), admits a unique solution in
L2(0, T ; (H1(Ω))′) and this solution belongs to C([0, T ]; (H1(Ω))′). To establish regularity
properties of solutions to equation (5.3.10) we need to construct solutions by an approxima-
tion process.

Approximation by regular solutions.

Recall that the solution to equation

∆w − w = 0 in Ω,
∂w

∂n
= v on Γ, (5.3.14)

satisfies the estimate
‖w‖H2(Ω) ≤ C‖v‖H1/2(Γ). (5.3.15)

Let u be in L2(Σ) and let (un)n be a sequence in C1([0, T ];H1/2(Γ)), converging to u in L2(Σ).
Denote by wn(t) the solution to equation (5.3.14) corresponding to v = un(t). With estimate
(5.3.15) we can prove that wn belongs to C1([0, T ];H2(Ω)) and that

‖wn‖C1([0,T ];H2(Ω)) ≤ C‖un‖C1([0,T ];H1/2(Γ)).

Let zn be the solution to equation (5.3.10) corresponding to (f, un, z0). Then yn = zn − wn is
the solution to

∂y

∂t
−∆y = f − ∂wn

∂t
+ ∆wn in Q,

∂y

∂n
= 0 on Σ, y(x, 0) = (z0 − wn(0))(x) in Ω.
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Since (z0 − wn(0)) ∈ L2(Ω) and f − ∂wn
∂t
− ∆wn belongs to L2(Q), yn and zn belong to

W (0, T ;H1(Ω), (H1(Ω))′). Thus, for every t ∈]0, T ], we have∫
Ω

|zn(t)|2 + 2

∫ t

0

∫
Ω

|∇zn|2 = 2

∫ t

0

∫
Ω

fzn + 2

∫ t

0

∫
Γ

unzn +

∫
Ω

|z0|2.

We first get

‖y‖2
C([0,T ];L2(Ω)) + 2‖∇y‖2

L2(0,T ;L2(Ω)) ≤ 2‖f‖L2(Q)‖y‖L2(Q) + 2‖u‖L2(Σ)‖y‖L2(Σ) + ‖y0‖2
L2(Ω).

Thus with Young’s inequality, we obtain

‖y‖C([0,T ];L2(Ω)) + ‖y‖L2(0,T ;H1(Ω)) ≤ C
(
‖f‖L2(Q) + ‖u‖L2(Σ) + ‖y0‖L2(Ω)

)
.

In the same way, we can prove

‖zn − zm‖C([0,T ];L2(Ω)) + ‖zn − zm‖L2(0,T ;H1(Ω)) ≤ C‖un − um‖L2(Σ).

Hence the sequence (zn)n converges to some z in C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)). Due to
Theorem 5.3.3, we can also prove that the sequence (zn)n converges to the solution of equation
(5.3.10) in C([0, T ];L2(Ω)). By using the same arguments as for Theorem 5.2.2, we can next
prove an estimate in W (0, T ;H1(Ω), (H1(Ω))′). Therefore we have established the following
theorem.

Theorem 5.3.4 For every f ∈ L2(Q), every u ∈ L2(Σ), and every z0 ∈ L2(Ω), equation
(5.3.10) admits a unique weak solution z(f, u, z0) in L2(0, T ;L2(Ω)), moreover the operator

(f, u, z0) 7→ z(f, u, z0)

is linear and continuous from L2(Q)× L2(Σ)× L2(Ω) into W (0, T ;H1(Ω), (H1(Ω))′).

We now consider the control problem

(P2) inf{J2(z, u) | (z, u) ∈ C([0, T ];L2(Ω))× L2(0, T ;L2(Γ)), (z, u) satisfies (5.3.10)},

where

J2(z, u) =
1

2

∫
Q

(z − zd)2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Σ

u2.

We assume that f ∈ L2(Q), z0 ∈ L2(Ω), and zd ∈ C([0, T ];L2(Ω)). Problem (P2) admits a
unique solution (z̄, ū) (see exercise 5.5.2). The adjoint equation for (P2) is of the form

−∂p
∂t
−∆p = g in Q,

∂p

∂n
= 0 on Σ, p(x, T ) = pT in Ω. (5.3.16)

Theorem 5.3.5 Suppose that u ∈ L2(Σ), g ∈ L2(Q), pT ∈ L2(Ω). Then the solution z of
equation

∂z

∂t
−∆z = 0 in Q,

∂z

∂n
= u on Σ, z(0) = 0 in Ω,

and the solution p of (5.3.16) satisfy the following formula∫
Σ

up =

∫
Q

z g +

∫
Ω

z(T )pT . (5.3.17)
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Proof. We leave the reader adapt the proof of Theorem 5.2.3.

Theorem 5.3.6 If (z̄, ū) is the solution to (P2) then ū = − 1
β
p|Σ, where p is the solution to

the equation

−∂p
∂t
−∆p = z̄ − zd in Q,

∂p

∂n
= 0 on Σ, p(x, T ) = z̄(T )− zd(T ) in Ω. (5.3.18)

Conversely, if a pair (z̃, p̃) ∈ W (0, T ;H1(Ω), (H1(Ω))′) ×W (0, T ;H1(Ω), (H1(Ω))′) obeys the
system

∂z

∂t
−∆z = f in Q,

∂z

∂n
= − 1

β
p|Σ on Σ, z(x, 0) = z0 in Ω,

−∂p
∂t
−∆p = z − zd in Q,

∂p

∂n
= 0 on Σ, p(T ) = z(T )− zd(T ) in Ω,

(5.3.19)

then the pair (z̃,− 1
β
p̃|Σ) is the optimal solution to problem (P2).

Proof. We set F2(u) = J2(z(f, u, z0), u). A calculation similar to that of the previous section
leads to:

F ′2(ū)u =

∫
Q

(z̄ − zd)wu +

∫
Ω

(z̄(T )− zd(T ))wu(T ) +

∫
Σ

βuū,

where wu is the solution to the equation

∂w

∂t
−∆w = 0 in Q,

∂w

∂n
= u on Σ, w(x, 0) = 0 in Ω.

With formula (5.3.12) applied to p and wu we obtain∫
Q

(z̄ − zd)wu +

∫
Ω

(z̄(T )− zd(T ))wu(T ) =

∫
Σ

up.

Thus F ′2(ū) = p|Σ + βū. The end of the proof is similar to that of Theorem 5.2.4.

5.4 Dirichlet boundary control

Now we want to control the heat equation by a Dirichlet boundary control, that is

∂z

∂t
−∆z = f in Q, z = u on Σ, z(x, 0) = z0 in Ω. (5.4.20)

Since we want to study equation (5.4.20) in the case when u belongs to L2(Σ), we have to
define the solution to equation (5.4.20) by the transposition method. We follow the method
introduced in Chapter 2. We first study the equation

∂z

∂t
−∆z = 0 in Q, z = u on Σ, z(x, 0) = 0 in Ω. (5.4.21)

Suppose that u is regular enough to define the solution to equation (5.4.21) in a classical sense.
Let y be the solution to

−∂y
∂t
−∆y = φ in Q, y = 0 on Σ, y(x, T ) = 0 in Ω. (5.4.22)
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With a Green formula (which is justified if z and y are regular enough), we can write∫
Q

zφ = −
∫

Σ

u
∂y

∂n
= 〈u,Λφ〉L2(Σ),

where Λφ = − ∂y
∂n

. Due to Theorem 5.2.2 we know that the mapping

φ 7−→ y

is linear and continuous from L2(Q) into L2(0, T ;H2(Ω)∩H1
0 (Ω))∩H1(0, T ;L2(Ω)). Thus the

operator Λ is linear and continuous from L2(Q) into L2(0, T ;L2(Γ)), and Λ∗ is a linear and
continuous operator from L2(0, T ;L2(Γ)) into L2(Q). Since the identity

∫
Q
zφ = 〈u,Λφ〉L2(Σ) =

〈Λ∗u, φ〉L2(Q) is satisfied for every φ ∈ L2(Q), we have z = Λ∗u. For u ∈ L2(Σ), the solution
zu to equation (5.4.21) is defined by zu = Λ∗u. For equation (5.4.20) the definition of solution
is stated below.

Definition 5.4.1 A function z ∈ L2(Q) is a solution to equation (5.4.20) if, and only if,∫
Q

zφ =

∫
Q

fy +

∫
Ω

z0y(0)−
∫

Σ

u
∂y

∂n

for all φ ∈ L2(Q), where y is the solution to equation (5.4.22).

Due to the continuity property of Λ∗, we have the following theorem.

Theorem 5.4.1 For every f ∈ L2(Q), every u ∈ L2(Σ), and every z0 ∈ L2(Ω), equation
(5.4.20) admits a unique weak solution z(f, u, z0) in L2(0, T ;L2(Ω)), moreover the operator

(f, u, z0) 7→ z(f, u, z0)

is linear and continuous from L2(Q)× L2(Σ)× L2(Ω) into L2(Q).

5.4.1 Observation in L2(Q)

Thanks to Theorem 5.4.1 we can study the following control problem

(P3) inf{J3(z, u) | (z, u) ∈ L2(0, T ;L2(Ω))× L2(Σ), (z, u) satisfies (5.4.20)},

with

J3(z, u) =
1

2

∫
Q

(z − zd)2 +
β

2

∫
Σ

u2.

We here suppose that zd belongs to L2(Q). Contrary to the case of Neumann boundary
controls, we cannot include an observation of z(T ) in L2(Ω) in the definition of (P3). To write
optimality conditions for (P3), we consider adjoint equations of the form

−∂p
∂t
−∆p = g in Q, p = 0 on Σ, p(x, T ) = 0 in Ω. (5.4.23)
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Theorem 5.4.2 If u ∈ L2(Σ), then the solution z of equation (5.4.21) and the solution p of
(5.4.23) satisfy the following formula∫

Q

f p =

∫
Q

z g +

∫
Σ

u
∂p

∂n
. (5.4.24)

Proof. The result directly follows from definition 5.4.1.

Theorem 5.4.3 Assume that f ∈ L2(Q), z0 ∈ L2(Ω), and zd ∈ L2(0, T ;L2(Ω)). Let (z̄, ū) be
the unique solution to problem (P3). The optimal control ū is defined by ū = 1

β
∂p
∂n

, where p is
the solution to the equation

−∂p
∂t
−∆p = z̄ − zd in Q, p = 0 on Σ, p(x, T ) = 0 in Ω. (5.4.25)

This necessary optimality condition is also sufficient.

Proof. We set F3(u) = J3(z(f, z0, u), u). Due to Theorem 5.4.2, we have

F ′3(ū)u =

∫
Q

(z̄ − zd)wu + β

∫
Σ

ūu =

∫
Σ

(− ∂p

∂n
+ βū)u.

The end of the proof is now classical.

5.4.2 Observation in C([0, T ];H−1(Ω))

Denote by ‖ · ‖H−1(Ω) the dual norm of the H1
0 (Ω)-norm, that is the usual norm in H−1(Ω):

‖f‖H−1(Ω) = supz∈H1
0 (Ω)

〈f, z〉H−1(Ω)×H1
0 (Ω)

‖z‖H1
0 (Ω)

.

Let f be in H−1(Ω) and denote by (−∆)−1f the solution to the equation

−∆z = f in Ω, z = 0 on Γ.

Theorem 5.4.4 The mapping

f 7−→ ‖|f |‖H−1(Ω) = 〈f, (−∆)−1f〉1/2
H−1(Ω)×H1

0 (Ω)

is a norm in H−1(Ω) equivalent to the usual norm.

Proof. We know that (−∆)−1 is an isomorphism from H−1(Ω) to H1
0 (Ω). Thus f 7→

‖(−∆)−1f‖H1
0 (Ω) is a norm in H−1(Ω) equivalent to the usual norm. If f ∈ H−1(Ω), mul-

tiplying the equation −∆((−∆)−1f) = f by (−∆)−1f , with a Green formula, we have∫
Ω

|∇((−∆)−1f)|2 = 〈f, (−∆)−1f〉H−1(Ω)×H1
0 (Ω) ≤ ‖(−∆)−1f‖H1

0 (Ω)‖f‖H−1(Ω).

Since the norm f 7→ ‖(−∆)−1f‖H1
0 (Ω) is equivalent to the norm in H−1(Ω), we obtain

c1‖f‖2
H−1(Ω) ≤ 〈f, (−∆)−1f〉H−1(Ω)×H1

0 (Ω) ≤ c2‖f‖2
H−1(Ω).

The proof is complete.
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Theorem 5.4.5 (i) Let z(f, u, z0) be the solution to equation (5.4.20). The operator

(f, u, z0) 7→ z(f, u, z0),

is linear and continuous from L2(Q)× L2(Σ)× L2(Ω) into C([0, T ];H−1(Ω)).

(ii) If u ∈ L2(Σ), and if pT ∈ H1
0 (Ω), then the solution z of equation (5.4.21) and the solution

p of

−∂p
∂t
−∆p = 0 in Q, p = 0 on Σ, p(x, T ) = pT in Ω,

satisfy the following formula

〈z(T ), pT 〉H−1(Ω)×H1
0 (Ω) = −

∫
Σ

u
∂p

∂n
. (5.4.26)

Proof. (i) We only need to prove the regularity result for the solution z of equation (5.4.21).
For every ϕ ∈ H1

0 (Ω) and every τ ∈]0, T ], consider the solution y to equation

−∂y
∂t
−∆y = 0 in Q, y = 0 on Σ, y(τ) = ϕ in Ω.

Due to Theorem 5.2.2, we have

‖y‖L2(0,τ ;H2(Ω)∩H1
0 (Ω)) ≤ c‖ϕ‖H1

0 (Ω),

and the constant c is independent of τ . Let (un)n ⊂ L2(Σ) a sequence of regular functions
satisfying the compatibility condition un(x, 0) = 0, and converging to u in L2(Σ). Denote by
zn the solution to (5.4.21) corresponding to un. Since zn is regular, it satisfies the formula∫

Ω

zn(τ)ϕ = −
∫

Γ×(0,τ)

un
∂y

∂n
.

Thus we have

‖zn(τ)‖H−1(Ω) = sup‖ϕ‖
H1

0(Ω)
=1

∣∣∣ ∫
Γ×(0,τ)

un
∂y

∂n

∣∣∣ ≤ c‖un‖L2(Σ),

where the constant c is independent of τ . From this estimate it follows that

‖zn − zm‖C([0,T ];H−1(Ω)) = ‖zn − zm‖L∞(0,T ;H−1(Ω)) ≤ c‖un − um‖L2(Σ).

Therefore the sequence (zn)n converges to some z̃ in C([0, T ];H−1(Ω)). Due to Theorem
5.4.1, the sequence (zn)n converges to the solution z of equation (5.4.21). We finally have
z = z̃ ∈ C([0, T ];H−1(Ω)).

(ii) Formula (5.4.26) can be established for regular data, and next deduced in the general case
from density arguments.

Now we are in position to study the control problem

(P4) inf{J4(z, u) | (z, u) ∈ L2(0, T ;L2(Ω))× L2(Σ), (z, u) satisfies (5.4.20)},

with

J4(z, u) =
1

2
‖|z(T )− zT |‖2

H−1(Ω) +
β

2

∫
Σ

u2.

The proof of existence and uniqueness of solution to problem (P4) is standard (see exercise
5.5.3).
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Theorem 5.4.6 Assume that f ∈ L2(Q), z0 ∈ L2(Ω), and zd ∈ L2(0, T ;L2(Ω)). Let (z̄, ū) be
the unique solution to problem (P4). The optimal control u is defined by u = 1

β
∂p
∂n

, where p is
the solution to the equation

−∂p
∂t
−∆p = 0 in Q, p = 0 on Σ, p(x, T ) = (−∆)−1(z̄(T )− zT ) in Ω. (5.4.27)

Proof. We set F4(u) = J4(z(f, z0, u), u). If wu is the solution to equation 5.4.21, and p the
solution to equation 5.4.27, with the formula stated in Theorem 5.4.5(ii), we have

F4(ū)u = 〈wu(T ), (−∆)−1(z̄(T )− zT )〉H−1(Ω)×H1
0 (Ω) + β

∫
Σ

ūu.

=

∫
Σ

(
− ∂p

∂n
+ βū

)
u.

The proof is complete.

5.5 Exercises

Exercise 5.5.1

The notation are the ones of section 5.2. Let (un)n be a sequence in L2(0, T ;L2(ω)), converging
to u for the weak topology of L2(0, T ;L2(ω)). Let zn be the solution to equation (5.2.1)
corresponding to un, and zu be the solution to equation (5.2.1) corresponding to u. Prove that
(zn(T ))n converges to zu(T ) for the weak topology of L2(Ω). Prove that the control problem
(P1) admits a unique solution.

Exercise 5.5.2

Prove that the control problem (P2) of section 5.3 admits a unique solution.

Exercise 5.5.3

The notation are the ones of section 5.4. Let (un)n be a sequence in L2(Σ), converging to
u for the weak topology of L2(Σ). Let zn be the solution to equation (5.4.20) corresponding
to un, and zu be the solution to equation (5.4.20) corresponding to u. Prove that (zn(T ))n
converges to zu(T ) for the weak topology of H−1(Ω). Prove that the control problem (P4)
admits a unique solution.

Exercise 5.5.4

Let Ω be a bounded domain in RN , with a boundary Γ of class C2. Let T > 0, setQ = Ω×(0, T )
and Σ = Γ× (0, T ). We consider a convection-diffusion equation with a distributed control

∂z

∂t
−∆z + ~V · ∇z = f + χωu in Q, z = 0 on Σ, z(x, 0) = z0 in Ω. (5.5.28)
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The function f belongs to L2(Q), χω is the characteristic function of ω, ω is an open subset

of Ω, and the function u is a control variable. We suppose that ~V ∈ (L∞(Q))N . We want to
study the control problem

(P5) inf{J5(z, u) | (z, u) ∈ C([0, T ];L2(Ω))× L2(0, T ;L2(ω)), (z, u) satisfies (5.5.28)},

where

J5(z, u) =
1

2

∫
Q

(z − zd)2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Q

χωu
2,

and β > 0. We assume that zd ∈ C([0, T ];L2(Ω)).

We first study equation (5.5.28) by a fixed point method. For that we need a regularity for
the heat equation that we state below.

Regularity result. For any 1 < q <∞, there exists a constant C(q) such that the solution
z to the heat equation

∂z

∂t
−∆z = f in Q, z = 0 on Σ, z(x, 0) = 0 in Ω,

satisfies

‖z‖C([0,T ];L2(Ω)) + ‖z‖L2(0,T ;H1
0 (Ω)) ≤ C(q)‖f‖Lq(0,T ;L2(Ω)) for all f ∈ Lq(0, T ;L2(Ω)).

1 - Now we choose 1 < q < 2. Let r be defined by 1
2

+ 1
r

= 1
q
, and t̄ ∈]0, T ] such that

C(q)t̄1/r‖~V ‖(L∞(Q))N ≤ 1
2
. Let φ ∈ C([0, t̄];L2(Ω)) ∩ L2(0, t̄;H1

0 (Ω)), and denote by zφ the
solution to equation

∂z

∂t
−∆z = f + χωu− ~V · ∇φ in Q, z = 0 on Σ, z(x, 0) = z0 in Ω. (5.5.29)

Prove that the mapping
φ 7−→ zφ

is a contraction in C([0, t̄];L2(Ω)) ∩ L2(0, t̄;H1
0 (Ω)).

2 - Let ẑ be the solution in C([0, t̄];L2(Ω)) ∩ L2(0, t̄;H1
0 (Ω)) to equation

∂z

∂t
−∆z + ~V · ∇z = f + χωu in Ω× (0, t̄), z = 0 on Γ× (0, t̄), z(x, 0) = z0 in Ω.

The existence of ẑ follows from the previous question. Let φ ∈ C([0, 2t̄];L2(Ω))∩L2(0, 2t̄;H1
0 (Ω))

such that φ = ẑ on [0, t̄], and denote by zφ the solution to equation

∂z

∂t
−∆z = f + χωu− ~V · ∇φ in Q, z = 0 on Σ, z(x, 0) = z0 in Ω. (5.5.30)

Prove that the mapping
φ 7−→ zφ

is a contraction in the metric space

{φ ∈ C([0, 2t̄];L2(Ω)) ∩ L2(0, 2t̄;H1
0 (Ω)) | φ = ẑ on [0, t̄]},
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for the metric corresponding to the norm of the space C([0, 2t̄];L2(Ω)) ∩ L2(0, 2t̄;H1
0 (Ω)).

3 - Prove that equation (5.5.28) admits a unique solution in C([0, T ];L2(Ω))∩L2(0, T ;H1
0 (Ω)),

and that this solution obeys

‖z‖C([0,T ];L2(Ω)) + ‖z‖L2(0,T ;H1
0 (Ω)) ≤ C(‖f‖L2(Q) + ‖u‖L2(ω×(0,T )) + ‖z0‖L2(Ω)).

4 - Prove that the control problem (P5) admits a unique solution. Write first order optimality
conditions.

Exercise 5.5.5

Let Ω be a bounded domain in RN , with a boundary Γ of class C2. Let T > 0, setQ = Ω×(0, T )
and Σ = Γ× (0, T ). We consider the heat equation with a control in a coefficient{

∂y
∂t
−∆y + u y = f in Q, T > 0,

y = 0 on Γ×]0, T [, y(x, 0) = y0(x) in Ω,
(5.5.31)

avec f ∈ L2(Q), y0 ∈ L2(Ω) et

u ∈ Uad = {u ∈ L∞(Q) | 0 ≤ u(x, t) ≤M a.e. in Q}, M > 0.

We want to study the control problem

(P6) inf{J6(y) | u ∈ Uad, (y, u) satisfies (5.5.31)}

avec J6(y) =
∫

Ω
|y(x, T )− yd(x)|2dx, yd is a given function in L2(Ω).

1 - Prove that equation (5.5.31) admits a unique solution yu in C([0, T ];L2(Ω))∩L2(0, T ;H1
0 (Ω))

(the fixed point method of the previous exercise can be adapted to deal with equation (5.5.31)).
Prove that this solution belongs to W (0, T ;H1

0 (Ω), H−1(Ω)).

2 - Let (un)n ⊂ Uad be a sequence converging to u for the weak star topology of L∞(Q). Prove
that (yun)n converges to yu for the weak topology of W (0, T ;H1

0 (Ω), H−1(Ω)). Prove that (P6)
admits solutions.

3 - Let u and v be two functions in Uad. Set zλ = (yu+λv − yu)/λ. Prove that (zλ)λ converges,
when λ tends to zero, to the solution zu,v of the equation{

∂z
∂t
−∆z + vyu + uz = 0 in Ω×]0, T [,

z = 0 on Γ×]0, T [, z(x, 0) = 0 in Ω.
(5.5.32)

4 - Let (yu, u) be a solution to problem (P6). Write optimality conditions for (yu, u) in function
of zu,v−u (for v ∈ Uad). Next, write this optimality condition by introducing the adjoint state
associated with (yu, u).
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