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1 Introduction

Optimal Control Theory deals with optimization problems involving a controlled dynamical
system. A controlled dynamical system is a dynamical system in which the trajectory can be
altered continuously in time by choosing a control parameter u(t) continuously in time. A
(deterministic) controlled dynamical system is usually governed by an ordinary differential
equation of the form

ẋ(t) = f(t, x(t), u(t)), t > 0

x(0) = x0 ∈ Rd

 (1.1)

where u : Rd → U is a function called the control, U a given set called the control set, and

f : R+ × Rd × U → IRd.

By choosing the value of u(t), the state trajectory x(t) can be controlled. The objective of
controlling the state trajectory is to minimize a certain cost associated with (1.1).

Consider the following important problem studied by Bushaw and Lasalle in the field
of aerospace engineering. Let x(t) represent the deviation of a rocket trajectory from some
desired flight path. Then, provided the deviation is small, it is governed to a good approxi-
mation by

ẋ(t) = A(t)x(t) +B(t)u(t), t > 0
x(0) = x0, x(T ) = 0,

u(t) ∈ [−1, 1],

 (1.2)

where A and B are appropriate matrix valued functions. The vector x0 is the initial deviation,
u(t) is the rocket thrust at time t, and T is the final time. The problem is that of finding a
rocket thrust history to minimize

J(u) :=

∫ T

0

c(t, x(t), u(t))dt (1.3)
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where c is a certain cost function. Here the aim is to reduce to deviation to zero over the
time interval [0,T ], and at the same time, to make the value of J(u) as small as possible.
The cost function c is chosen so that J(u) has the interpretation of, say, fuel consumption
or (via a change of independent variable) the time taken to reduce the deviation to zero.

Subsequently Pontryagin and his collaborator studied the following optimal control prob-
lem : minimize ∫ T

0

c(t, x(t), u(t))dt + g(x(T ))

Subject to

ẋ(t) = f(t, x(t), u(t))

x(0) ∈ C0, x(T ) ∈ C1, u(t) ∈ U


(1.4)

where c, f , g are appropriate functions, and C0 ⊂ Rd, C1 ⊂ Rd. Minimization is carried
out over control functions u(·) and the corresponding solutions to the differential equations
which satisfy the constraints. The importance of the formulation of the optimal control
problem cannot be overemphasized. It incorporates a large number of dynamic optimization
problems of practical interest. In particular it also subsumes the classical problem of calculus
of variations. Indeed, put

f(t, x, u) = u, g = 0.

Then the above problem reduces to: minimize∫ T

0

c(t, x(t), ẋ(t))dt

subject to
x(0) ∈ C0, x(T ) ∈ C1.

Thus we recover, as a special case of (1.4), the basic problem of calculus of variation which
is of fundamental importance in Classical Mechanics and various other fields.

2 Optimal Control Problems

Let U ⊂ Rm be compact and

f : R+ × Rd × Rm → Rd.

Let x(·) : R+ → Rd be the solution of the controlled ordinary differential equation given by

ẋ(t) = f(t, x(t), u(t)), t > 0

x(0) = x ∈ Rd

 (2.1)
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where u(·) : R+ → Rm is a measurable function such that u(t) ∈ U a.e. Such a function is
called a control function or simply control. We assume that

(A1) The function f is continuous, and Lipschitz in its second argument uniformly with
respect to the first and third.

For a given control u(·), a Lipschitz continuous function x(·) satisfying (2.1) a.e. is called
the state trajectory corresponding to u(·). Under the assumption (A1), for a given control
a unique state trajectory exists for all time for any initial condition x(0) = x.

Let
c : R+ × Rd × Rm → R

and
g : Rd → R.

We assume that

(A2) The function c is continuous, and Lipschitz in its second argument uniformly with
respect to the first and third.

(A3) The function g is Lipchitz continuous.

We now describe the typical optimal control problems.

(P1) Finite Horizon Problem : Let T > 0 be fixed.
Let

JT (x, u(·)) :=
∫ T

0

c(t, x(t), u(t))dt+ g(x(T ))

i.e., JT (x, u(·)) is the total cost incurred over the finite time interval (horizon) [0, T ]. Here
the function c is referred to as the running cost and the function g is referred to as the
terminal cost. Our objective is to minimize JT (x, u(·)) over all controls u(·).
A control u∗(·) is called an optimal control for the initial condition x for the finite horizon
problem if

JT (x, u
∗(·)) = inf

u(·)
JT (x, u(·))

where the infimum above is over all controls . For given ε > 0, a control uε(·) is said to be
an ε - optimal control if

JT (x, uε(·)) ≤ inf
u(·)

JT (x, u(·)) + ε.

Note that an optimal control is ε - optimal control for any ε > 0. On the other hand if u∗(·)
is ε - optimal for every ε > 0, then it is optimal.

(P2) Exit Time Problem: Let D ⊂ Rd be a smooth, bounded domain. Let

T = inf {t ≥ 0| x(t) /∈ D̄}.

Let

JT(x, u(·)) :=
∫ T

0

c(t, x(t), u(t))dt+ g(x(T)).
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In the exit time problem we wish to minimize JT(x, u(·)) over all controls.
(P3) Discounted Cost Problem: Let α > 0 be the discount factor. The α- discounted cost
on the infinite horizon is given by

Jα(x, u(·)) :=
∫ ∞

0

e−αtc(t, x(t), u(t))dt.

(P4) Ergodic Control Problem: In the ergodic control problem we seek to minimize the
limiting time -average cost given by

lim sup
T→∞

1

T

∫ T

0

c (t, x(t), u(t)) dt.

3 Existence Theory

In this section we address the question of the existence of an optimal control. For this pur-
pose we describe the finite horizon case in details. We first begin with the following example
to demonstrate non-existence of optimal controls.

Example 3.1 Minimize ∫ 1

0

x2(t)dt

subject to
ẋ = u, x(0) = 0

u(·) ∈ {−1, 1}.

Consider the sequence of controls un(·), n = 1, 2, . . . , given by

un(t) =


1 if 2k

n
≤ t < 2k+1

n
,

−1 if 2k+1
n

≤ t < 2k+2
n

.

If xn(·) denotes the corresponding state trajectories, then

sup
n

| xn(t)| ≤ n−1.

Evidently ∫ 1

0

x2
n(t)dt → 0 as n → ∞.

So it follows that

inf

∫ 1

0

x2(t)dt = 0.
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Now suppose there is an optimal control u∗(·), and x∗(·) the corresponding trajectory. Then∫ 1

0

x∗2(t)dt = 0

which implies x∗(·) ≡ 0. Hence
ẋ∗(·) ≡ 0.

but this is not tenable since 0 /∈ {−1, 1}.

We proceed to establish the existence of an optimal control. To this end we need an
additional condition. Let

f̃ : R× Rd × Rm → Rd+1

be defined by

f̃(t, x, u) =

[
c(t, x, u)
f(t, x, u)

]
.

(A4) The set f̃(t, x, U) is convex for all t, x.

Theorem 3.1 Assume (A1)− (A4). Then there exists an optimal control.

Proof. We first observe that we can take c ≡ 0 without any loss of generality. Indeed, if c
is present, we treat instead the problem
minimize g̃(x̃(T )) subject to

˙̃x = f̃(t, x̃, u)

where
x̃ = [x0, x]

′ ∈ Rd+1, x0(0) = 0

g̃(x̃) = x0 + g(x).

Clearly the new problem is equivalent to the original one. This justifies the reduction. We
claim that for any x ∈ Rd, there exists a constant K such that

| x(t) |< K, for all t ∈ [0, T ] (3.1)

for any state trajectory x(·) under any control u(·), satisfying x(0) = x. Indeed, choose a
fixed control ū(·), and let x̄(·) be the corresponding trajectory with x̄(0) = x. Set

z(t) = x(t)− x̄(t).

Then for any 0 ≤ s ≤ t ≤ T, we have

| z(t)− z(s) | ≤
∫ t

s

| f(σ, x(σ), u(σ))− f(σ, x̄(σ), ū(σ)) | dσ
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≤
∫ t

s

| f(σ, x(σ), u(σ))− f(σ, x̄(σ), u(σ)) | dσ

+

∫ t

s

| f(σ, x̄(σ), u(σ))− f(σ, x̄(σ), ū(σ)) | dσ

≤ C1

∫ t

s

| z(σ) | dσ + C2(t− s)

where C1 is the Lipschitz constant associated with f and C2 is a uniform bound on the
integrand of the second term. Note that C2 depends on T , but it is a priori fixed. Thus
there exists a constant C3 such that

| | z(t) | − | z(s) | | ≤ C3

∫ t

s

(1+ | z(σ) |)dσ

By Gronwall’s inequality, z(t) is uniformly bounded on [0, T ]. Since x̄(·) in a given process,
it follows that then exists a K > 0 such that

| x(t) | ≤ K ∀t ∈ [0, T ] .

Now, let {un(·)} be a sequence of controls, and {xn(·)} the corresponding trajectory with
xn(0) = x, such that

g(xn(T )) → inf g(x(T )) (3.2)

as n → ∞, where the infimum on the right is over all controls. By (A1) and Ascoli’s theorem
there exists a Lipschitz continuous function x(·) with x(0) = x, such that

sup
t∈[0,T ]

| xn(t)− x(t) | → 0 (3.3)

along a suitable subsequence. We next show that x(·) satisfies (2.1) for some control u(·).
To achieve this we first show that for any p ∈ Rd

sup
u∈f(σ,x(σ),U)

⟨p, u⟩ ≥ ⟨p, ẋ(σ)⟩ , a.e. σ ∈ [0, T ]

where < · > denote the inner product in Rd. Fix any interval [s, t] ⊂ [0, T ]. It is easy to see
that ∫ t

s

f(σ, xn(σ), un(σ))dσ →
∫ t

s

ẋ(σ)dσ. (3.4)

Now

|
∫ t

s

(f(σ, x(σ), un(σ))− ẋ(σ))dσ |

= |
∫ t

s

f(σ, xn(σ), un(σ))− ẋ(σ))dσ
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+

∫ t

s

(f(σ, x(σ), un(σ))− f(σ, xn(σ), un(σ))dσ |

≤ C sup
σ

| x(σ)− xn(σ) |

+

∫ t

s

(f | σ, xn(σ), un(σ))− ẋ(σ) | ds

→ 0 (3.5)

by (3.3) and (3.4). Next choose p ∈ Rd. Then by (3.5)

< p,

∫ t

s

(f(σ, x(σ), un(σ))− ẋ(σ))dσ > → 0

as n → ∞. For any n, however,∫ t

s

sup
u∈U

< p, f(σ, x(σ), u)− ẋ(σ) > dσ ≥ < p,

∫ t

s

(f(σ, x(σ), un(σ))− ẋ(σ))dσ > .

Hence ∫ t

s

sup
u∈U

< p, f(σ, x(σ), u)− ẋ(σ) > dσ ≥ 0. (3.6)

Since (3.6) is true for any [s, t] ⊂ [0, T ], we have

sup
u∈f(t,x(σ),U)

< p, u > ≥ < p, ẋ(σ) > a.e.

Let E be a countable dense subset of Rd. By the above there exists a set S ⊂ [0, T ] of full
measure such that

sup
u∈f(σ,x(σ),U)

< p, u > ≥ < p, ẋ(σ) > ∀p ∈ E

whenever σ ∈ S. This implies

ẋ(σ) ∈ c̄of(σ, x(σ), U) = f(σ, x(σ), U) (3.7)

since by (A1), (A4), f(σ, x(σ), U) is a closed convex set.
To conclude the proof, we have by (A3),

g(x(T )) = lim
n→∞

g(xn(T )) = inf g(y(T )),

where the infimum is over all state trajectories y(·) , satisfying y(0) = x. Now by the
foregoing

ẋ(t) ∈ f(t, x(t), U) a.e.
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Therefore by a standard measurable selection theorem there exists a control u(·) s.t.

ẋ(t) = f(t, x(t), u(t)) a.e.

Hence
g(x(T )) = min

y(·)
g(y(T )).

Thus u(·) is an optimal control.

Remark 3.1. Note that our existence result is heavily based on the assumption (A4). This
type of convexity condition is seldom satisfied outside the problems where control enters
linearly into the dynamics. It is therefore natural to enquire whether the class of controls
can be further extended so as to dispose of this condition. We achieve this by introducing
relaxed control problem which we describe below.

Relaxed Control Problem: For any polish space X, P(X) denotes the space of all prob-
ability measures on X. Let P(X) be endowed with the topology of weak convergence, i.e.,
the weakest topology that makes P(X) ∋ µ 7→

∫
hdµ ∈ R continuous for all bounded and

continuous map
h : X → R.

Hence
µn → µ in P(X)

if and only if ∫
hdµn →

∫
hdµ

for all h ∈ Cb(X). For any polish space X, P(X) is always separable ; P(X) is compact if
and only if X is compact. A relaxed control µ(·) is a measurable map µ : R+ → P(Rd) such
that µ(t)(U) = 1 a.e. A relaxed trajectory x(·) corresponding to the relaxed control µ(·) is
a solution of the equation.

ẋ(t) = f̄(t, x(t), µ(t)) (3.8)

where
f̄ : R+ × Rd ×P(U) → Rd

is defined by

f̄(t, x, µ) =

∫
U

f(t, x, u)µ(du). (3.9)

Remarks 3.2 If u(·) is a usual control then δu(·) is a relaxed control and

f̄(t, x, δu(t)) =

∫
f(t, x, u(t)).
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Therefore the relaxed control setup subsumes the usual one. On the other hand if f(t, x, U)
is convex, then under (A1), for any µ ∈ P(U),

f̄(t, x, µ) ∈ f(t, x, U).

Indeed, there exists

µn =

m(n)∑
i=1

αn
i .δun

i

αn
i ≥ 0,

m(n)∑
i=1

αn
i = 1, such that

µn → µ.

Therefore by a standard measurable selection theorem there exist a usual control u(t) such
that

f̄(t, x, µ(t)) = f(t, x, u(t)).

Hence in this case a relaxed control can be identified with a usual one.
We now show that under the assumptions (A1)− (A3) a relaxed control always exists.

Theorem 3.2 Under (A1)− (A3), an optimal relaxed control exists.

Proof. As before we assume without any loss of generality that c ≡ 0. In view of Remark
3.2, it suffixes to show the existence of an optimal usual control under the additional assump-
tion that f(t, x, U) is convex for each t, x, where U is any compact metric space. We take
a minimizing of sequence of controls {un(·)} and {xn(·)} the corresponding trajectories. We
can show as before that {xn(·)} is uniformly bounded and uniformly Lipschitz continuous.
Therefore {xn(·)} is relatively compact. Let

αn(t) = f(t, xn(t), un(t)).

Then {αn(·)} is relatively compact in L2w[0, T ]. Let xn(·) → x(·) in the uniform topology
and αn(·) → α(·) in L2w[0, T ] along the same subsequence. Then∫ T

0

h(t)αn(t)dt →
∫ T

0

h(t)α(t)dt

for all h ∈ L2[0, T ]. Take h(t) = I{0 ≤ t ≤ s}. Then∫ s

0

αn(t)dt →
∫ s

0

α(t)dt

Since

xn(t) = x+

∫ t

0

αn(s)ds,
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if follows that

x(t) = x+

∫ t

0

α(s)ds.

Now, αn(·) → α(·) in L2w[0, T ]. Therefore by Banach - Saks theorem

1

k

k∑
i=1

αni
→ α(·) in L2[0, T ].

This implies that

1

km

km∑
i=1

αni
(t) → α(t) a.e. t.

Fix t for which the above holds. Then

1

km

km∑
i=1

αni
(t) =

1

km

km∑
i=1

f(t, xni
(t), uni

(t))

→ α(t).

This implies there exists a ũi(.) such that

f(t, x(t), ũi(t)) → α(t).

Since U is compact, ũi → u∗ along a subsequence. Then

α(t) = f(t, x(t), u∗) ∈ f(t, x(t), U) a.e. t.

On the set of measure zero on which the above fails, redefine x(t) = f(t, x(t), u0) for a fixed
u0 ∈ U . Therefore there exists a measurable u∗ such that α(t) = f(t, x(t), u∗(t)). Hence

x(t) = x+

∫ T

0

f(t, x(t), u∗(t))dt.

Clearly u∗(·) is an optimal control.

We next state the following theorem.

Theorem 3.3 Assume (A1) − (A3). Let x∗(·) be a relaxed state trajectory. Then given
ε > 0 there exists a usual state trajectory x(·) with the same initial condition such that

max
t∈[0,T ]

| x∗(·)− x(·) |< ε.

As a consequence
min {g(x(T )) : relaxed state trajectories}

= inf {g(x(T )) : usual state trajectories} .
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4 Dynamic Programming

Dynamic programming is a very powerful approach to study dynamic optimization problems.
The fundamental principle of dynamic programming, the so called principle of optimality,
can be stated quite simply , “If an optimal trajectory is broken into two pieces, then the
last piece is itself optimal”. In discrete time problems this principle leads to the backward
induction algorithm to compute the optimal cost and an optimal control. In continuous time,
however, backward induction is not feasible. Nevertheless, this principle of optimality leads
to a nonlinear partial differential equation of first order known as Hamilton-Jacobi-Bellman
(HJB) equation which in turn determines the optimal cost and an optimal control. To this
end we introduce the concept of value function V. Let

V : [0, T ]× Rd → R

be defined by

V (t, x) := inf
u(·)

[∫ T

t

c(s, x(s), u(s))ds+ g(x(T ))

]
(4.1)

where

ẋ(s) = f (s, x(s), u(s)), s ∈ (t, T )]

x(t) = x

u(·) : [t, T ] → U.

The function V is called the value function and V (t, x) gives the ‘minimum cost go’ at time
t from the state x.

For the sake of simplicity, we assume that the cost functions c and g are bounded below.
Since the addition of constants to c and g would not alter an optimal control, we may ( and
will) assume without any loss of generality that c and g are non-negative functions. Also our
aim here is to derive a sufficient condition for optimality. Hence we assume the existence of
an optimal control.

Lemma 4.1 Let x ∈ Rd and t ∈ [0, T ],∆ > 0, t+∆ ∈ (0, T ]. Then

V (t, x) = inf
u(.)

[∫ t+∆

t

c(s, x(s), u(s))ds+ V (t+∆, x(t+∆))

]
(4.2)

where
ẋ(s) = f(s, x(s), u(s)), s ∈ (t, T ] , x(t) = x

and
u(·) : [t, T ] → U.
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Proof. For any measurable function u(·) : [t, T ] → U, we have by the definition of V

V (t, x) ≤
∫ t+∆

t

c(s, x(s), u(s))ds+

∫ T

t+∆

c(s, x(s), u(s))ds+ g(x(T )).

Taking infimum in the second and third terms in the above, we get

V (t, x) ≤
∫ t+∆

t

c(s, x(s), u(s))ds+ V (t+∆, x(t+∆)).

Therefore

V (t, x) ≤ inf
u(.)

[∫ t+∆

t

c(s, x(s), u(s))ds+ V (t+∆, x(t+∆))

]
. (4.3)

To get the reverse inequality, let ε > 0 be arbitrary. Then by the definition of V (t, x), there
exists a control uε(·) such that

V (t, x) ≥
∫ t+∆

t

c(s, xε(s), uε(s))ds+

∫ T

t+∆

c(s, xε(s), uε(s))ds+ g(xε(T ))− ε, (4.4)

where xε(·) is the state under uε(·) with xε(t) = x. Taking infimum in the second and third
terms in (4.4) we obtain

V (t, x) ≥ inf
u(·)

[∫ t+∆

t

c(s, x(s), u(s))ds+ V (t+∆, x(t+∆))

]
− ε.

Since ε > 0 is arbitrary

V (t, x) ≥ inf
u(·)

[∫ t+∆

t

c(s, x(s), u(s))ds+ V (t+∆, x(t+∆)

]
. (4.5)

The desired result (4.2) follows from (4.3) and (4.5).

Remark 4.1. The equation (4.2) is the integral from of the dynamic programming equation.
The Hamilton-Jacobi-Bellman (HJB) equation is usually derived from (4.2).

Exercise 4.1 Assume c ≡ 0. Let u(·) be a control and x(·) the corresponding state trajectory.
Show that V (t, x(t)) is a nondecreasing function of t.

Exercise 4.2 Assume c ≡ 0. Let u∗(·) be an optimal control and x∗(·) the corresponding
state trajectory. Show that V (t, x∗(t)) is a constant, i.e., it is independent of t.

Exercise 4.3 Show that V is Lipschitz continuous, i.e., there exists a constant K > 0 such
that for t1, t2 ∈ [0, T ], x1, x2 ∈ Rd

| V (t1, x1)− V (t2, x2) | ≤ K (| t1 − t2 | + | x1 − x2 |) .

(Hint. Use the Lipschitz continuity properties of c, f and g.)
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Remark 4.2 It follows from Exercise 4.3 that V is differentiable almost everywhere. Under
the additional assumption that V ∈ C1,1([0, T ]× Rd) we can establish the following result.

Theorem 4.1 Let V ∈ C1,1([0, T ] × Rd). Assume that an optimal control exists. Then V
satisfies the following nonlinear partial differential equation known as HJB equation

Vt(t, x) + inf
u∈U

[∇xV (t, x).f(t, x, u) + c(t, x, u)] = 0

V (T, x) = g(x) .

 (4.6)

Proof. Let t ∈ [0, T ], x ∈ Rd, ∆ > 0, t+∆ ∈ (0, T ]. From Lemma 4.1

V (t, x) = inf
u(.)

[∫ t+∆

t

c(s, x(s), u(s))ds+ V (t+∆, x(t+∆))

]
.

Let u(·) be a control with u(t) = u0 and u(·) continuous at t. Then

0 ≤
∫ t+∆

t

c(s, x(s), u(s))ds+ V (t+∆, x(t+∆))− V (t, x).

Dividing by ∆ and letting ∆ → 0, we get

Vt(t, x) +∇xV (t, x).f(t, x, u0) + c(t, x, u0) ≥ 0 (4.7)

for all u0 ∈ U. To obtain the reverse inequality let u∗(·) be an optimal control with u∗(t) = u∗

and x∗(·) the corresponding state trajectory with x∗(t) = x. Assume that c ≡ 0. Then by
Exercise 4.2, V (s, x∗(s)) is independent of s. Therefore

d

ds
V (s, x∗(s)) = 0.

Thus
Vt(t, x) +∇xV (t, x).f(t, x, u∗) = 0 (4.8)

If c ̸= 0, then (4.8) takes the form

Vt(t, x) +∇xV (t, x).f(t, x, u∗) + c(t, x, u∗) = 0. (4.9)

The desired result the follows from (4.7) and (4.9).

Remark 4.3 Define the function

H : [0, T ]× Rd × Rm × Rd → R

by
H(t, x, u, p) = p.f(t, x, u) + c(t, x, u). (4.10)
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The functionH is called the (pseudo) Hamiltonian for the system. In terms ofH the equation
(4.6) becomes

Vt(t, x) + inf
u∈U

H(t, x, u,∇xV (t, x)) = 0

V (T, x) = g(x) .

 (4.11)

The value function V (t, x), however, need not be continuously differentiable as the following
example shows (Zhou (1993)).

Example 4.1 Consider the following optimal control problem : minimize −x(1)
subject to :

ẋ(t) = x(t)u(t), t ∈ (0, 1]

x(0) = x

u(·) : [0, 1] → [0, 1] .

It is easily seen that the value function V (t, x) is given by

V (t, x) =


−xe1−t , x > 0

−x , x ≤ 0.

Indeed the existence of a C1,1([0, T ]) × Rd) solution of (4.11) is more of an exception than
a rule. Nevertheless, the existence of a C1,1([0, T ]) × Rd) solution of (4.11) leads to the
following verification theorem.

Theorem 4.2 Let W ∈ C1,1([0, T ]× Rd) be a solution of (4.11). Then
(a) W satisfies

W (t, x) ≤
∫ T

t

c(s, x(s), u(s))ds+ g(x(T ))

for any control u(·) where

ẋ(s) = f(s, x(s), u(s))ds+ g(x(T ))

x(t) = x.

Thus W (t, s) ≤ V (t, x).
(b) Suppose u∗(·) is a control and x∗(·) the corresponding state trajectory. If

Wt(t, x
∗(t)) +H(t, x∗(t),∇xW (t, x∗(t))) = 0 a.e. (4.12)

then u∗(·) is an optimal control and W (t, x) = V (t, x).
Proof. (a) We have

d

ds
W (t, x(s)) = Ws(t, x(s)) +∇xW (s, x(s)).f(s, x(s), u(s))
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≥ −c(s, x(s), u(s)).

Therefore

g(x(T ))−W (t, x) ≥ −
∫ T

t

c(s, x(s), u(s))ds.

Thus

W (t, x) ≤
∫ T

t

c(s, x(s, u(s))ds+ g(x(T )).

(b) Arguing as above, we have

W (t, x) =

∫ T

t

c(s, x∗(s), u∗(s))ds+ g(x∗(T )).

It thus follows that
W (t, x) = V (t, x).

and hence u∗(.) is optimal.

Remark 4.4 It follows from the above theorem that if (4.11) has a solutionW ∈ C1,1([0, T ])×
Rd), and furthermore if (4.12) is satisfied then the solution W equals the value function V .
In other words, under these circumstances the value function V is the unique C1,1([0, T ]×Rd)
solution of (4.11). But the value function need not be C1,1 as we have seen in Example 4.1.
Moreover, there are practical difficulties in verifying (4.12) with W replaced by the value
function V . In practice Theorem 4.2 is used via a ‘feedback’ control which we describe now.
If there exists a ‘nice’ function

ū : [0, T ]× Rd → U

satisfying
c (t, x, ū(x, t)) +∇xV (t, x).f(t, x, ū(t, x))

= min
u∈U

[c(t, x, u) +∇xV (t, x).f(t, x, u)]
(4.13)

such that the ‘closed-loop’ equation

ẋ(t) = f(t, x(t), ū(t, x))

x(0) = x

 (4.14)

has a unique solution, then the feedback control given by

u∗(t) = ū(t, x(t)) (4.15)

is optimal. Stringent conditions on f and c are, however, needed to ensure the validity of
(4.13) and (4.14). Nevertheless, when these conditions are satisfied, (4.13) - (4.15) offer
a very useful way of finding an optimal control. To illustrate this point we describe the
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celebrated LQ problem which is an optimal control problem involving a linear system with
quadratic cost.

Example 4.2 Minimize ∫ T

0

[a(t)x2(t) + b(t)u2(t)]dt+ cx2(T )

subject to
ẋ(t) = α(t)x(t) + β(t)u(t), x(0) = x ∈ R

where
a(t) ≥ 0, b(t) > 0, c ≥ 0, u(t) ∈ R.

The HJB equation (4.11) for this problem is given by

∂V
∂t

= −min
u∈IR

[
a(t)x2 + b(t)u2 +

∂V

∂x
(α(t)x+ β(t)u)

]
V (T, x) = cx2.

 (4.16)

The minimum on the right side of (4.16) is achieved at

u∗(t) = − β(t)

2b(t)

∂V

∂x
. (4.17)

Substituting (4.17) into (4.16) we get

−∂V

∂t
= a(t)x2 − β2(t)

4b(t)

(
∂V

∂x

)2

+ α(t)x
∂V

∂x
. (4.18)

We look for a trial solution
V (t, x) = p(t)x2 + q(t).

Then
∂V

∂x
= 2p(t)x,

∂V

∂t
= ṗ(t)x2 + q̇(t).

Substituting these into (4.18) and simplifying we obtain

−ṗ(t)x2 − q̇(t) =

[
a(t)− β2(t)p2(t)

b(t)
+ 2α(t)p(t)

]
x2

Thus
ṗ(t) = β2(t)p2(t)

b(t)
− a(t)− 2α(t)p(t)

p(T ) = c.

 (4.19)

Also, q̇(t) = 0 and p(T )x2 + q(T ) = cx2, which implies that q(T ) = 0. Hence q(t) ≡ 0.
Therefore

V (t, x) = p(t)x2
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is the value function, where p(·) is the solution of the Riccati equation (4.19). The optimal
feedback control is given by

ū(t, x) = −β(t)

b(t)
p(t)x.

Exercise 4.4 Consider the general LQ problem: minimize∫ T

0

[x′(t)Q(t)x(t) + u′(t)R(t)u(t)] dt+ x′(T )Sx(T )

subject to :
ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = x ∈ Rd

u(t) ∈ Rm, Q(t) and S are non negative definite d× d matrix, and R(t) is an m×m positive
definite matrix, A(t) is a d× d matrix, and B(t) is a d×m matrix. Find the value function
and the optimal feedback control for this problem.

Exercise 4.5 Calculate the feedback control that minimizes∫ T

0

[
x1(t)− α)2 + u2(t)

]
dt

for the system
ẋ1(t) = x2, ẋ2(t) = u(t)

u(t) ∈ R, x1(0) = x1, x2(0) = x2.

Remark 4.5 We have seen in Example 4.1 that the value function V need not be differen-
tiable. This makes the applicability of Theorem 4.2 rather limited. On the other hand from
Exercise 4.3. it follows that V is differentiable almost everywhere. One can then modify the
proof of Theorem 4.1 to show that V satisfies (4.11) almost everywhere. We can also modify
the proof of Theorem 4.2 to show that if there exists a control u∗(·) such that

H(t, x∗(t), u∗(t),∇xV (t, x∗(t))

= inf
u∈U

H(t, x∗(t),∇xV (t, x∗(t))) a.e.t.

then u∗(·) is optimal. We cannot, however, show that V is the unique solution of (4.11)
in the class of functions which are differentiable almost everywhere. Moreover, the above
cannot be directly used to get a feedback control. These difficulties can be overcome by
introducing a new solution concept for the equation of the type (4.11), namely the viscosity
solution (Fleming and Soner (1991)). The verification theorem (Theorem 4.2) can also be
generalized in terms of the viscosity solution (Zhou (1993)). We leave these topics for further
reading.
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5 Conclusions

In this note we have formulated the optimal control problem and presented the existence the-
ory. We have also studied the dynamic programming approach to optimal control problems.
Here we have not studied Pontryagin’s maximum principle which provides a very powerful
method in finding optimal controls. For these issues and many more information on optimal
control we refer to Fleming and Rishel (1975), Fleming and Soner (1991), and Clarke (1983).
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