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1. Introduction

1.1. Necessity of a nonsmooth solution. We start with few difficulties that arise in the study
partial differetial equations.

Consider the following simple equation

(1.1)

{
|u′| = 1, x ∈ (0, 1)

u(0) = u(1) = 0.

The first question is the existece of a classical solution. By a classical solution, we mean a
contiuously differentiable function u : [0, 1] → R which satisfies (1.1). Since |u′| is one, if u is
classical solution, u′ has to be identically equal to either 1 or −1. Thus one of the boundary
condition will fail. Thus a classical solution does not exist.

Due to the nonlinearity of the equation, we can not apply the weak solution techniques. The
next option is to try out the generalized solutions. A generalized solution is a function u which
satisfies the equation in a.e. sense.

Define the function un, n = 1, 2, · · · as follows:

un(0) = 0,

u′n(x) =

 1, if x ∈ ( 2k
2n ,

2k+1
2n )

−1, if x ∈ ( 2k+1
2n , 2k+2

2n )

for k = 0, 1, · · · , 2n−1 − 1. Then it is easy to see that un’s are infinitely many solutions of
the equation (1.1). This leads us to the problem of nonuniqueness. There is another problem
associated to this example. Note that the solutions un converge to zero as n→∞ and zero is not
a solution. Thus the approximations does not give approximate solutions. This is called stability.
Stability is an important issue from the physics point of view.

In order to get rid of these troubles, Crandall & Lions introduced the notion of viscosity solutions
to nonlinear pde. There are some other notions of solutions like Clarke’s generalized solution and
Subbotin’s minimax solution. However, they are specific to the first order equations with special
dependence on gradient variable.

1.2. Viscosity solutions: Definition and Stability. Consider the general nonlinear equation

(1.2) F (x, u(x), Du(x), D2u(x)) = 0, x ∈ Ω

where F : Ω × R × RN ×S N → R is a continuous function and Ω is any open set in RN . Here
S N denotes the space of all N ×N real valued symmetric matrices.

We call F degenerate elliptic if the following condition is satisfied:

F (x, r, p,X) ≤ F (x, r, p, Y ) whenever X ≥ Y

where X ≥ Y means that X−Y is nonnegative definite matrix. It is called proper if it is degenerate
elliptic and satisfies the monotonicity condition in the r-variable i.e.,

F (x, r, p,X) ≤ F (x, s, p, Y ) whenever r ≤ s and X ≥ Y.
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From now on, we always assume our equations to be proper, unless otherwise specified. To
motive the definition of viscosity solutions, we prove the following proposition which is a variant
of classical maximum principle.

Proposition 1.1. Let u be a classical solution of the equation (1.2) and φ : Ω → R be any C2

function. Then if u− φ has a locam maximum (local minimum) at a point x0 ∈ Ω, then

F (x0, u(x0), Dφ(x0), D2φ(x0)) ≤ (≥)0.

Proof. The proof is a simple consequence of the maximum principle. If u−φ has a local maximum
at x0, then Du(x0) = Dφ(x0) and D2u(x0)−D2φ(x0) ≤ 0. Now using the degenerate ellipticity,
we conclude. �

We now give the definition of the viscosity solution.

Definition 1.2. An upper semicontinuous function (resp., lower semincontinuous function) u :
Ω→ R is called a viscosity subsolution (resp., viscosity supersolution) if

F (x0, u(x0), Dφ(x0), D2φ(x0)) ≤ (resp., ≥)0

whenever x0 is local maximum (resp., local minimum) of u− φ for a smooth function φ : Ω→ R.
A continuous function u which is both viscosity sub and super-solution is called a viscosity

solution.

Few remarks are in order.

Remark 1.3. The definition of viscosity solution is a local one. This means that u is viscosity
subsolution in Ω then it is subsolution also in Ω′ where Ω′ ⊂ Ω.

Remark 1.4. In the defintion of viscosity solution, local maximum can be replaced by global max-
imum and also by strict local or global maximum. Also C2 functions can be replaces by smooth
functions. Also we can assume that the local maximum is zero. Similar remark applies for super-
solutions also.

Now on, we remove the term viscosity and we simply call subsolution or supersolution unless
no confusio arises. We also use the following notation throughout: the function φ used in the
definition of viscosity solutions are called test functions.

We now consider the Dirichlet problem associated with (1.2). Let u0 : ∂Ω → R be a given
function.

Definition 1.5. An usc (resp. lsc) function u is called subsolution (resp. supersolution) of (1.2)
with the boundary condition

(1.3) u(x) = u0(x), on ∂Ω

if u is subsolution (resp., supersolution) in Ω and satisfies

u(x) ≤ (≥)u0(x) on ∂Ω.

A continuous function u is called solution to the Dirichlet problem (1.2) - (1.3) if it is both sub
and super solution.

We now present the corner stone of the theory of viscosity solutions i.e., the stability result.

Theorem 1.6. (Stability) Let F, Fn, n = 1, 2, · · · be proper and assume that Fn → F uniformly
on compact sets. Let un be viscosity solution to the equation

Fn(x, un(x), Dun(x), D2un(x)) = 0 in Ω

and assume that un → u uniformly on compact sets. Then u is viscosity soltion to (1.2).

Proof. We prove the subsolution part and leave the supersolution part as it is similar.
Let u− φ has a strict local maximum at x0 ∈ Ω where φ is a smooth function. Let B be a ball

around x0 such that

u(x0)− φ(x0) = sup
B

(u− φ) > sup
∂B

(u− φ).



AN INTRODUCTION TO THE THEORY OF VISCOSITY SOLUTIONS 3

Choose xn such that

un(xn)− φ(xn) = sup
B

(un − φ).

Choose a subsequence, which we again denote by the same by an abuse of notation, such that
xn → x̄ for some x̄ ∈ B̄. Now for any x ∈ B, we have the following:

un(x)− φ(x) ≤ un(xn)− φ(xn)→ u(x̄)− φ(x̄) as n→∞.

Thus

u(x)− φ(x) ≤ u(x̄)− φ(x̄)

for all x ∈ B and hence x̄ = x0 due the strictness of local maximum. Now using the subsolution
property for un, we have

F (xn, u(xn, Dφ(xn), D2φ(xn)) ≤ 0.

Now letting n→∞, we obtain

F (x0, u(x0), Dφ(x0), D2φ(x0)) ≤ 0.

This completes the theorem. �
We now look at the example considered in previous section.

Example 1.7. Consider the exampe considered in Section 1. Define

u(x) =
1

2
− |1

2
− x|

We now verify that u is viscosity solution of (1.1). If φ is any test function such that u − φ
has a local extremum at any point other that 1

2 , then u′(x) = φ′(x) = ±1 and hence u satisfies

both the subsolution and supersolution properties. If 1
2 is a local maximum of u − φ, then using

simple calculus, we note that φ′( 1
2 ) ∈ [−1, 1]. Thus u satisfies the subsolution property at 1

2 . Now

let u − φ has local minimum at 1
2 , then observe that 1 ≤ φ′( 1

2 ) ≤ −1 which is not possible. Thus
u− φ can not have any local minimum for any smooth function. Thus u is viscosity solution.

We now prove that any other generalized solution can not be viscosity solution. Since any other
generalized solution have a local mimum and at that local minimizer the supersolution property
fails to hold, this follows.

1.3. Sub and Super differentials. In this section, we give an alternate definition of viscosity
solution which will be useful in certain cases.

Definition 1.8. Let u : Ω → R. Define the sets D+u(x), D−u(x), J2,+u(x), J2,−u(x) which are
respectively called super differential, sub differential, superjet and subject as follows:

D+u(x) = {p ∈ RN : lim sup
y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≤ 0}

D−u(x) = {p ∈ RN : lim inf
y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≥ 0}

Remark 1.9. If (p,X) ∈ J2,+u(x), it is obvious from the definition that (p, Y ) ∈ J2,+u(x) for
all Y ≥ X. Thus J2,+u(x) is always either empty or infinite. Also the superjet need not be closed
if it is nonempty. Similar remark holds for the superjet. However, sub and superdifferentials can
be finite sets and are always closed.

We now prove a characterization of these sets which gives an equivalent definition of viscosity
solution in terms of these sets.

Proposition 1.10.

D+u(x) = {Dφ(x) : u− φ has a local maximum at x for some test function φ}
D−u(x) = {Dφ(x) : u− φ has a local minimum at x for some test function φ}
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Proof. We will only prove the third part and rest can be proved similarly or using the dual relation
between the sub and super jets.

If φ is a test function such that u − φ has local maximum at x, then using the second order
taylor’s series expansion, we can easily show that

(Dφ(x), D2φ(x)) ∈ J2,+u(x).

We now show the converse.
Let (p,X) ∈ J2,+u(x). By definition we can choose a continuous, non-decreasing function σ

such that

u(y) = u(x) + 〈p, y − x〉+
1

2
〈X(y − x), y − x〉+ σ(|y − x|)|y − x|2

Now define a C2 function η by

η(r) =

∫ r

0

∫ s

0

σ(τ)dτ ds

Then we have
η(4r) ≥ 2r2σ(r).

Let

φ(y) = φ(x) + 〈p, y − x〉+
1

2
〈X(y − x), y − x〉+ η(4|y − x|)

then η is C2 funtion. Note that

u(y)−φ(y) ≤ σ(|y−x|)|y−x|2− η(4r) ≤ σ(|y−x|)|y−x|2−2σ(|y−x|)|y−x|2 ≤ 0 = u(x)−φ(x)

and thus u − φ has local maximum at x. Also note that (p,X) = (Dφ(x), D2φ(x)). This proves
the reverse inclusion. �

This proposition gives a new definition to the viscosity solutions.

Definition 1.11. An usc function u is said to be viscosity subsolution if

F (x, u(x), p) ≤ 0 for all p ∈ D+u(x)

and a lsc function u is said to be viscosity supersolution if

F (x, u(x), p,X) ≥ 0 for all p ∈ D−u(x).

A viscosity solution is both sub and supersolution.

1.4. Some Properties of Sub and Super differentials. In this section, we review some prop-
erties of sub and super differentials.

Theorem 1.12. 1. D+u(x) and D−u(x) are closed and convex.

2. If both D+u(x) and D−u(x) are non empty, then u is differentiable at x and D+u(x) =
D−u(x), a singleton.

3. {x ∈ Ω : D+u(x) 6= ∅} and {x ∈ Ω : D−u(x) 6= ∅} are dense in Ω.

Proof. We will prove only (2) and (3) as (1) is trivial.
Since both D+u(x), D−u(x) are nonempty, we can find test functions φ1(x), φ2(x) such that

φ1(y) ≤ u(y) ≤ φ2(y) and φ1(x) = u(x) = φ2(x)

Now using classical maximum principle, we obtain that Dφ1(x) = Dφ2(x). Thus D+u(x) =
D−u(x), a singleton. Now by the definition of sub and superdifferentials, we note that

lim
y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

= 0

where p ∈ D+u(x). Thus u is differentiable at x. This completes part (2).
Let x̄ ∈ Ω and B be an open ball centered at x̄ in Ω. Let ε > 0 and consider the test function

φ(x) = 1
ε |x− x̄|. Choose xε such that

u(xε)− φ(xε) = sup
x∈B

(u− φ)

Now
u(x̄) ≤ u(xε)− φ(xε)
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and hence
1

ε
|xε − x̄| ≤ C

where C = 2 supB u. Hence xε → x̄. Therefore xε ∈ B for all ε sufficiently small. Hence
D+u(xε) 6= ∅ for all such ε. Similarly we can prove the subdifferential part. This completes the
proof of part (3) and hence the theorem. �

We now state the dual relationship between sub and superdifferentials. We omit the proof as
it is trivial.

Theorem 1.13. For any usc function u : Ω→ R, we have

D+u(x) = −D−(−u)(x) and J2,+u(x) = −J2,−(−u)(x)

2. Some Properties of Viscosity Solutions

In this section, we present some properties of viscosity solutions.

Proposition 2.1. (a) Let u, v ∈ C(Ω) be viscosity subsolutions of (1.2). Then u ∨ v is also a
subsolution of (1.2).

(b) Let u, v ∈ C(Ω) be viscosity supersolutions of (1.2). Then u ∧ v is also a supersolution of
(1.2).

(c) Let u ∈ C(Ω) be a viscosity subsolution of (1.2) such that u ≥ v for any subsolution v ∈ C(Ω).
Then u is a viscosity solution of (1.2).

Proof. Let u ∨ v − φ has a local maximum at x0. With out loss of generality, we can assume that
u(x0) = u ∨ v(x0). It is clear to see that u− φ also has local maximum at x0. Thus

F (x0, u ∨ v(x0), Dφ(x0), D2φ(x0)) = F (x0, u(x0), Dφ(x0), D2φ(x0)) ≤ 0

Thus u ∨ v is a subsolution. This completes the proof of (a). Similarly we can prove (b).
We now proceed to prove (c). The proof is by contradiction. Assume that u is not viscosity

supersolution. Thus there is a point x0 and a smooth function φ such that u−φ has local minimum
at x0 and

θ = F (x0, u(x0), Dφ(x0), D2φ(x0)) < 0

Choose δ0 > 0 such that

u(x0)− φ(x0) ≤ u(x)− φ(x) for all x ∈ B̄(x0, δ0)

Consider the smooth function

ψ(x) = φ(x)− |x− x0|4 + u(x0)− φ(x0) +
1

2
δ4

for 0 < δ < δ0. Note that
u(x0)− ψ(x0) < u(x)− ψ(x)

whenever |x− x0| = δ. Note that

ψ(x0) = u(x0) +
1

2
δ2, Dφ(x0) = Dψ(x0) and D2φ(x0) = D2ψ(x0).

Hence we can choose δ sufficiently small so that

|F (x, ψ(x), Dψ(x), D2ψ(x))− F (x0, u(x0), Dφ(x0), D2φ(x0))|+ θ ≤ 0

for all x ∈ B̄(x0, δ). Now define v̄ by

v̄ =

{
u ∨ ψ on B(x0, δ)

u on Ω \B(x0, δ)

Then it is easy to see that v̄ is a continuous function and is subsolution. Since v̄(x0) > u(x0), this
gives contradiction to our hypothesis. Thus u is viscosity solution. This completes the proof of
part (c) and hence the theorem. �

We now prove change of unknown.

Proposition 2.2. Let u ∈ C(Ω) be a viscosity solution and Φ ∈ C2(R) such that
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2.1. Vanishing Viscosity Method. In this section, we introduce the vanishing viscosity method
which is the basis for the name “viscosity solution”. This also gives an application to the stability
result of viscosity solution.

Consder the Hamilton-Jacobi equation

(2.1) u+H(Du) = f, x ∈ RN

where H : RN → R is a Lipschitz continuous function. We assume that f : RN → R is bounded
and Lipschitz continuous function.

Consider the second order equation

(2.2) − ε∆uε + uε +H(Duε) = f.

Due to the uniform ellipticity of (2.2), there is a unique classical solution of (2.2) with the property

(2.3) ‖uε‖∞ ≤ ‖f‖∞

Further if vε denotes the classical solution of (2.2) where f is replaced by any other bounded
Lipschitz continuous function g, we have from the maximum principle, the following estimate

(2.4) ‖uε − vε‖∞ ≤ ‖f − g‖∞

Now for any fixed h ∈ RN , let g be defined by g(x) = f(x+ h). Then vε(x) = uε(x+ h) for all
x ∈ RN . Now using (2.3) and (2.4), we obtain the following estimates

‖uε‖∞ ≤ ‖f‖∞ and ‖uε(·)− uε(·+ h)‖∞ ≤ C|h|

where C is the Lipschitz constant of f . Using the above inequalities, we conclude that {uε} is
equibounded and equiLipschitz continuous. Now applying Ascoli-Arzela’s theorem, uε → u locally
uniformly along a subsequenece, which we denote again by uε by an abuse of notation. The
stability of viscosity solutions yields that u is a viscosity solution of (2.1).

2.2. Exercises.

(1) Show by a density argument that an equivalent definition of viscosity solution can by given
by using smooth test functions instead of C2 test functions.

(2) Show that if D+u(x) 6= ∅ (or J2,+u(x) 6= ∅) then u is usc at x. Similarly if D−u(x) (or
J2,−u(x)) is nonempty then u is lsc. (Remark: This exercise justifies the reason for taking
the semicontinuity in the definition of viscosity solutions).

(3) If u is any Lipschitz continuous, then show that D+u(x) and D−u(x) are contained in the
ball B̄(0, L).

(4) Let u : RN → R be convex. The subdifferential of u in the sense of convex analysis is the
set

∂u(x) = {p ∈ RN : u(y) ≥ u(x) + p · (y − x),∀y ∈ RN}

Show that ∂u(x) = D−u(x).
(5) Assume that un ∈ C(Ω and un → u locally uniformly in Ω. Show that for any x ∈ Ω,

D+u(x) ⊆ lim sup
n→∞
y→x

D+un(y).

(6) Let u ∈ C([a, b]). Prove the mean value property: there exists ξ ∈ (a, b) such that
u(b)− u(a) = p(b− a) for some p ∈ D−u(ξ) ∪D+u(ξ).

3. Comparision Principles and Uniqueness

In this chapter, we devote our attention to study comparison principles and uniqueness results.
We start with first order equations

3.1. First Order Equations.
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3.2. Uniquness in Bounded Domains. Consider the fully nonlinear first order equation

(3.1) H(x, u(x), Du(x)) = 0, x ∈ Ω

where Ω is a bounded open set in RN . We use the symbol H in first order case to signify that
it is Hamiltonian in most of the examples. We always assume that H is strictly monotonically
increasing in the u-variable. Formally this amounts to the following condition

∂H(x, u, p)

∂u
> γ > 0.

If H is not differentiable, then the above assumption reads as
Assumption (H1)

H(x, u, p)−H(x, v, p) ≥ γ(u− v)

for all u ≥ v.
This guarantees uniqueness as in the case of implicit function theorem. Suppose if this condition

is not true. Then one can easily see that any translation of a solution also becomes a solution.
Thus this condition is essential in order to have uniqueness. We will also study the equations
which do not depend on u-variable. In that case, the uniqueness criteria has to be modified.

Assume u and v are classical sub and super solutions respectively of (3.1). Also assume that

u ≤ v on ∂Ω.

We want to show that u ≤ v in Ω. Suppost u 6≤ v. Then there is a point x0 ∈ Ω such that u− v
has maximum at x0. Now using classical maximum principle we note that Du(xo) = Dv(x0).
Thus we have

H(x0, u(x0), Du(x0))−H(x0, v(x0), Dv(x0)) ≤ 0

which gives a contradiction to the assumption (H1). Thus u ≤ v. In the case of viscosity solutions,
this proof does not work directly as Du(x0) may not be defined. However, using Theorem 1.4.1
(3) can be used to overcome this difficulty. We now proceed to prove the comparison principles
for viscosity solutions.

Let u, v be sub and supersolution of (3.1). Assume that u ≤ v on ∂Ω. Consider the the function

Φ(x, y) = u(x)− v(y)− 1

ε
|x− y|2, x, y ∈ Ω̄

where ε > 0 ia a parameter. Due to the semincontinuity of u, v and boundedness of the domain,
u,−v are bounded above. Thus Φ is bounded above for each ε > 0. Let (xε, yε) be a maximizer
of Φ.

As earlier assume that u 6≤ v. Thus there exists x0 ∈ Ω such that

u(x0)− v(x0) = sup
Ω̄

(u− v) = δ0 > 0.

Clearly

δ0 ≤ Φ(xε, yε).

Thus
1

ε
|xε − yε|2 ≤ u(xε)− u(yε)− δ0.

Since RHS is bounded, |xε − yε| → 0. Thus xε, yε → x̄ for some x̄ ∈ Ω. Using this convergence
again in the above inequality we get that

lim sup
ε→0

1

ε
|xε − yε|2 ≤ 0

and hence

lim
ε→0

1

ε
|xε − yε|2 = 0.
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Note that x 7→ u(x)− v(yε)− 1
2 |x− yε|

2 has maximum at xε and y 7→ v(y)− u(xε) + 1
2 |xε − y|

2

has minimum at yε. By definition of viscosity solutions, we have

H(xε, u(xε),
2

ε
(xε − yε)) ≤ 0

H(yε, u(yε),
2

ε
(xε − yε)) ≥ 0

Subtracting, we get

(3.2) H(xε, u(xε),
2

ε
(xε − yε))−H(yε, u(yε),

2

ε
(xε − yε)) ≤ 0

Suppose H is given by

(3.3) H(x, u, p) = u+ H̄(p)− f(x)

then (3.2) transforms into

u(xε)− v(yε) + f(yε)− f(xε) ≤ 0.

Letting ε → 0, we obtain δ0 ≤ 0 which a contradiction to our assumption. Thus we have proved
the following theorem.

Theorem 3.1. Let u, v be sub and supersolutions of (3.1) where H is given by (3.3). Assume
H̄, f are continuous. Let u ≤ v on ∂Ω. Then

u ≤ v in Ω.

We now proceed to prove the general case. We need the followig condition:
Assumption (H2)

H(x, u, α(x− y))−H(x, u, α(x− y) ≤ ω(|x− y|(1 + α|x− y|))

where ω is a modulus of continuity i.e., nonegative continuous and increasing function with the
property ω(r)→ 0 as r ↓ 0.

Theorem 3.2. Let u, v be sub and supersolutions of (3.1). Assume (H1) and (H2). Let u ≤ v
on ∂Ω. Then

u ≤ v in Ω.

Proof. Using the assumption (H2) in (3.2) we obtain

H(xε, u(xε),
2

ε
(xε − yε))−H(xε, u(yε),

2

ε
(xε − yε))− ω(|xε − yε|(1 +

2

ε
|xε − yε|)) ≤ 0

Now using the assumption (H1), we obtain

γ(u(xε)− v(yε))− ω(|xε − yε|(1 +
2

ε
|xε − yε|)) ≤ 0

Letting ε→ 0, we obtain γδ0 ≤ 0, which is a contradiction. Thus u ≤ v in Ω. �
As a corollary we obtain the following uniqueness result for the viscosity solutions of (3.1).

Corollary 3.3. Let u, v be two viscosity solutions of (3.1) such that u = v on ∂Ω. Then u = v.
Thus the Dirichlet problem {

H(x, u,Du(x)) = 0 in Ω

u = u0 on ∂Ω

has at most one solution.
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3.3. Uniqueness in Unbounded Domains. Here we study the first order equation (3.1) where
Ω is unbounded. We have used the fact that Ω is bounded very crucially in the previous subsection.
Due to the boundedness of Ω, the solutions are bounded. This fact is used very crucially in the
proof of comparison principle. If we make the boundedness of the solutions as an assumption, we
still able to conclude the comparison principle in the unboundedness case. However the function
Φ has to be modified suitably. We now prove the comparison principle for the bounded viscosity
solutions of (3.1). Due to the lack of compactness of the domain, we need the following condition
on H:
Assumption (H3)

H(y, u, λ(x− y) + p)−H(x, u, λ(x− y) + q) ≤ ω(|x− y|+ λ|x− y|2) + ω̄(|p− q|)
for all λ ≥ 1, p, q ∈ B̄(0, 1) and x, y ∈ Ω.

Theorem 3.4. Let u, v be bounded sub and supesolutions of (3.1) respectively. Assume that u ≤ v
on ∂Ω. Then u ≤ v.

Proof. Consider the function

Φ(x, y) = u(x)− v(y)− 1

ε
− α(η(x) + η(y))

where ε, α > 0 and η is any nonnegative Lipschitz continuous and smooth function with the
following property

η(x)→∞ as |x| → ∞.
As we are dealing with second order equations, η should be twice continuous differentiable at least.
An example of such a function is η(x) =

√
(1 + |x|2). The reason for adding β to Φ is the following

fact: If we do not add this, then we will not be able to choose a maximizer of Φ in Ω× Ω.
Now let (x̄, ȳ) ∈ Ω× Ω be a maximizer of Φ in RN × RN .
As in previous case, we proceed by contradiction. Let x0 ∈ Ω be such that

δ0 = u(x0)− v(x0) > 0.

Thus we have the following inequalities

δ0 − 2αη(x0) ≤ Φ(x̄, ȳ),
1
ε |x̄− ȳ|

2 ≤ u(x̄)− v(ȳ).

As earlier, we obtain from the second inequality that

|x̄− ȳ| → 0 and
1

ε
|x̄− ȳ|2 → 0

as ε→ 0.
Now using the definition of viscosity solution, we obtain the following inequalities:

H(x̄, u(x̄),
2

ε
(x̄− ȳ) + αDη(x̄)) ≤ 0

H(ȳ, u(ȳ),
2

ε
(x̄− ȳ)− αDη(ȳ)) ≤ 0

If we choose α sufficiently small such that α‖Dη‖∞ < 1, we can apply the assumption (H3). Now
applying (H1) and (H3), we obtain

γ(u(x̄− v(x̄)− ω(|x̄− ȳ|+ 2

ε
|x̄− ȳ|2)− ω̄(α|Dη(x̄+Dη(ȳ)|)

Thus we have

δ0 − 2αη(x0) ≤ ω(|x̄− ȳ|+ 2

ε
|x̄− ȳ|2) + ω̄(α|Dη(x̄+Dη(ȳ)|)

Now letting ε → 0 first and then letting α → 0, we arrive at contradiction. Thus the proof is
completed. �

In the above theorem, we assumed the boundedness of solutions. But in many cases, the
boundedness seems to be very restrictive assumptions. In the following thoerem, we relax this and
instead, we assume the uniform continuity.
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Theorem 3.5. Let u, v be uniformly continuous sub and supersolutions of (3.1) respectively.
Assume that u ≤ v on ∂Ω. Then u ≤ v.

Proof. The proof is based on the following observation. If u is uniformly continuous with the
modulus of continuity ω, then ω satisfies

sup
r>0

ω(r)

1 + r
<∞.

Once we have this fact, the rest of the proof is similar. Due to this fact, the function Φ defined
earlier will have maximum attained by a point. We donot give the details of the proof as it is by
now routine. �

Remark 3.6. So far, all our assumptions are global. However, this is not necessary. We can
assume that (H2) and (H3) are satisfied locally. By a slight modification of the proofs, we can still
prove the comparison result and hence uniquencess of Dirichlet problem.

3.4. Evolution Equations and Cauchy Problem. In this section, we concentrate on the evo-
lution equations. We consider the following equation

(3.4)
∂u

∂t
+H(t, x, u,Du) = 0, (t, x) ∈ (0, T ]× RN .

We have the following theorem.

Theorem 3.7. Let H be continuous and satisfy (H3). Let u, v be uniformly contiuous and viscosity
subsolution and viscosity supersolution respectively of (3.4). Assume that u(0, x) ≤ v(0, x). Then
u ≤ v.

4. Existence: Perron’s Method

5. Discontinuous Solutions and Barles-Perthame’s Method

One of the most important result in the theory of visosity solution is the stability result. Roughly
it says that if the solutions of a family of PDEs converge uniformly to a function, then the limit
function is solution to the limiting PDE. However the difficulty is in proving the convergence of the
solutions. Most of the cases, we will be having the equiboundedness (or local equiboundedness) of
the solutions. But this does not guarantee the convergence. Barles and Perthame introduced the
concept of weak limits and showed that these weak limits satisfy the limiting PDE always. When
the limiting PDE has comparison principle, they obtian that these weak limits coincide and thus
obtain the existence and convergence at a single stroke. We now describe this method in detail.
Here we are describing the procedure only for elliptic equation on a bounded domain Ω.

Let Fε : Ω × R × Rn → R be given continuous functions such that Fε → F0 uniformly on
compact sets as ε→ 0. Consder the family of nonlinear pdes

(5.1) Fε(x, uε, Duε) = 0.

Let uε be a viscosity solution to the equation (5.1) for each ε > 0. Assume that uε is localy bouned
uniformly in ε. Define the upper weak limit ū0 of the sequence {uε} by

ū0(x) = lim sup
(y,ε)→(x,0+)

uε(y)

and the lower weak limit u0 by

u0(x) = lim inf
(y,ε)→(x,0+)

uε(y).

Then we have the following lemma. We leave the proof as it is a standard real analysis exercise.

Lemma 5.1. The upper weak limit ūo is upper semicontinuous and the lower weak limit u0 is
lower semicontinuous.

We now prove a lemma which is crucial in establishing the main result.
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Lemma 5.2. Let B = B̄(x, r) be a closed ball of radius r with center x. Assume that x0 ∈ B be
a strict maximizer for ū0 − φ on B. Then there exists a sequence xn ∈ B and εn → 0+ such that
xn is maximizer of uεn − φ on B, x→x0 and uεn(x) → ū0(x0). Similar statement holds for the
lower weaklimit.

Proof. We prove only for the case of upper weak limit.
Choose arbitrarily two sequences εn → 0+ and xn → x0 such that uεn(xn)→ ū0(x0).
Let xn be a maximizer of uεn − φ on B and extract subsequences, still denoted by the same,

such that
xn → x̄, uεn(xn)→ α.

Now
(uεn − φ)(xn) ≥ (uεn − φ)(xn)

by definition. Hence
(ū0 − φ)(x̄0) ≥ α− φ(x̄) ≥ (ū0 − φ)(x0).

Since x0 is strict maximizer, x̄ = x0. This completes the lemma. �
We now give the main theorem.

Theorem 5.3. The upper weak limit ū0 is viscosity subsolution of (5.1) with ε = 0 and lower weak
limit is viscosiy supersolution to the same equation. Further if the equation (5.1) has comparison
principle for each ε ≥ 0 and uε(x)→ g(x) on ∂Ω then ūo = uo is the unique viscosity solution of
(5.1)) with ε = 0 and the boundary condition u0 = g on ∂Ω.

The proof of the theorem is essentially the same as in the proof of the stability result. So we
skip the details.

Disclaimer

These notes are in a very preliminary form and are intended for the benefit of the participants
of the workshop. The notes depend on a lot of material, particularly on the works by Barles,
Crandall, Evans, Ishii, Jensen and P.L. Lions. Also the bibliography is not complete.
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