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1. Introduction

Many of the physical principles states that basic quantities like mass, energy,momentum,...are
globally conserved. To formulate these laws in mathematical terms, we introduce
some notations.

• Space variable : x ∈ Rk, Time variable : t ∈ R
• Densities of conserved quantities u(x, t) ∈ Ω , which is an open connected

subset of Rn .
• Flux : f = (f1, f2, ...fk) is the rate of flow across a surface per unit surface,

each fj is in general a function of x, t, u and its space derivatives and
valued in Rn.

• Conservation laws says that : For any open bounded subset G of of space
Rk with smooth boundary ∂G, rate of change of substance in G is equal to
out flow of the substance from G.

d

dt

∫
G

u(x, t)dx = −
∫
∂G

f.ndS

here n : ∂G → Sk−1 is the outward unit vector and dS is the surface
element on ∂G

Assuming u and f are smooth in their arguments we get

d

dt

∫
G

u(x, t)dx =

∫
G

∂tu(x, t)dx,

∫
∂G

f.ndS =

∫
G

k∑
j=1

∂xjfjdx.

Here we used divergence theorem.

Then conservation law becomes, for all G open bounded subset of Rk∫
G

(∂tu+

k∑
j=1

∂xjfj)dx = 0

Now take G = Bε(x) = {y ∈ Rk : |x− y| < ε}

1

mε(B(x)

∫
Bε(x)

(∂tu+

k∑
j=1

∂xjfj)dx = 0

1
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Let ε go to 0, we get conservation law in PDE from :

∂tu+

k∑
j=1

∂xjfj = 0

• Important remark : To complete this theoretical formulation we need a
law relating (x, t, u, ∂xj , ...) to f = (f1, f2, ...fn).
• Examples :

1. Heat Conduction : Newton’s law of cooling ; f(u,∇u) = −h∇u, h
a positive constant, we get

ut = h4u

Next we give an example where the flux depends only on u
2.Traffic flow : ρ(x, t) is density of car on a highway at a point x at time
t.

Assume the speed of cars depends only on density v = v(ρ),
flux f = number of cars crossing at the point x per unit time then

f = density × velocity = ρv(ρ).

Conservation law becomes d
dt

∫ b
a
ρ(x, t)dx = [ inflow at a -outflow at b] ie

d

dt

∫ b

a

ρ(x, t)dx = [ρv(ρ)]− [ρv(ρ)](b) =

∫ b

a

[ρv(ρ)]dx

Conservation law becomes

∂tρ+ ∂x(ρv(ρ)

1.1. First order systems of conservation laws :

• In many physical phenomena in continuum mechanics, the flux depends
only on u. In this case the conservation laws becomes first order systems :

∂tu+

k∑
j=1

∂xjfj(u) = 0

or more generally

∂tf0(u) +

k∑
j=1

∂xjfj(u) = 0

where components of u are density, momentum, pressure, energy, etc.
• These systems appear as approximations of systems where effects of heat

conduction, viscosity, capillarity,..etc are ignored. Mathematically this
amounts to ignoring higher order derivative terms with small parameters
which give smoothing effects. One of the most important such system is
the following.

1. Compressible Euler equations in 3 -space dimension:

This is a 5× 5 system describing conservation of mass momentum and energy:
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∂tρ+

3∑
j=1

∂xj (ρvj) = 0

∂t(ρvi) +

3∑
j=1

∂xj (ρvivj + δijp) = 0, i = 1, 2, 3

∂t(ρE) +

3∑
j=

∂xj (ρvjE + pvj) = 0

Here ρ is the density, v = (v1, v2, v3) is velocity, p is pressure, E = 1
2 |v|

2 + e,
e = e(ρ, p) is given. δij is Kroneckar delta.

This system has a long history which dates back to Euler [1775] contributions
include Stokes, Riemann, Weyl, von Neumann.

Some simpler examples of conservation laws from continuum mechanics are given
below.

2. Linearly degenerate system

ut +Aux = 0.

where A is a constant n× n strictly hyperbolic matrix. The simplest wave propa-
gation problem and is linear.

3.Burgers equation
ut + (u2/2)x = 0.

This is an example of genuinely nonlineay case.
4.Isentropic gas dynamics equation

ρt +mx = 0,mt + (m2/ρ+ p(ρ))x = 0.

with , m = u.ρ, p(ρ) = const.ργ , γ > 1, where ρ is density, u is velocity, p(ρ) is
pressure.

5.Equation of elasticity

ut − σ(v)x = 0, vt − ux = 0

u velocity, v deformation gradient, σ stress.
5. Tsunami waves : Under water disturbances such as volcanoes, earthquakes

and landslides are the cause of tsunami waves some time reaching up to 40 meters.
In the open ocean Tsunamis may be hard to spot. Long wave lengths can hide the
size of the wave, Changes occur when the waves enter shallow water. The wave
length shortens and height increase. Most of the time in deep ocean it moves as
linear wave and at near the shore it is highly nonlinear. Modelling such waves is a
very difficult problem.

1.2. Initial value problem. The Initial value problem that is to find u such that

∂tf0(u) +

k∑
j=1

∂xjfj(u) = 0, x ∈ Rk, t > 0

with the initial conditions

u(x, 0) = uo(x), x ∈ Rk

One of the basic question is global in time Well-posedness

• 1.Existence of solution in suitable function space
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• 2.Uniqueness of solution
• 3.Continuous dependence of solution in suitable topology

Formation of singularities :

• Due to strong nonlinearity and absence of regularising effects, solutions
which are initially smooth becomes discontinuous in finite time.
• No well developed theory for multidimensional systems of first order con-

servation laws.
• Solution space is not understood and interpretation of solution in some

generalised sense is not clear. Even in the case weak formulation is available
solutions are NOT unique .
• Selection principle for the physical solution is not well understood except

for very special cases.
• Even for local wellposedness strong conditions on the system are required

generally called hyperbolicity conditions.
• Right now we have a well developed theory for

1. multidimensional scalar equations (k ≥ 1, n = 1)
2. systems of strictly hyperbolic conservation laws in one space variable
(k = 1, n ≥ 1).

Summary of results for general symmetrizable systems

• Generally even local existence theory is not available for multidimensional
systems.
• Friedrichs theory : Under reasonable conditions almost all first order sys-

tems of conservation laws of classical physics can be symmetryizable:

A0∂tu+

k∑
j=1

Aj(u)∂xju = 0

Where Aj , j = 0, 1, ...k are symmetric and A0 is positive definite. This
includes the compressible Euler system.
• Friedrichs : Linearized symmetric system is well posed in L2 Sobolev spaces
• Lax : Nonlinear symmetric system is locally well posed in Hs, s > n

2 + 1

• No global in time well posedness theory even for multidimensional sym-
metrizable systems .
• Structure of solutions are very complex. In addition to to shock waves,

rarefaction waves and contact discontinuities, which are common in one
space dimension, vorticity waves,focusing waves,concentration waves and
there interactions makes makes the evolution complicated.

Main study of solutions of these systems are based on:

• computing by effective numerical methods, which itself is a challenging field.
• Asymptotic analysis/similarity reduction/special solutions
• Rigorous analysis of solutions and their qualitative properties is for two

cases. 1. Multidimensional scalar equation- n = 1, k ≥ 1. 2. Systems of
hyperbolic conservation laws in one space variable-k = 1, n ≥ 1
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2. Systems of conservations in one space variable

First order systems of N conservation laws of the form

∂tu+ ∂x(f(u)) = 0, x ∈ R1, t > 0 (2.1)

for u(x, t) ∈ Ω appear in many physical applications. Here Ω is an open subset of
RN , and f : Ω → RN is a smooth function. The dependent variable u is called
conservative variable and f(u) is the flux associated with (2.1). The independent
variables x and t are space and time respectively. In continuum physics (com-
pressible fluid, nonlinear elastodynamics, phase transitions), equation of the form
(2.1) represents fundamental principles of conservation of mass, momentum, energy,
etc. when dissipative mechanisms are ignored. The system of equations (2.1) are
approximations of physical models of the form

∂tu+ ∂xf(u) = (R(εux, δ(ε)uxx, ...)x (2.2)

where ε is small and R(εux, ...) contain higher order derivative terms of the unknown
u. This equation carries small scale physical features (eg. viscosity and capillarity
of the physical medium) and are neglected in the inviscid level in (2.1), by taking
ε = 0 and R(0, 0, ...) = 0 in (2.2).

2.1. Initial value problem for inviscid system. Initial value problem is to find
a function u(x, t) of the system (2.1) with initial data

u(x, 0) = u0(x) (2.3)

in some suitable sense.
The questions that we are interested in are Well-posedness of the problem and

qualitative properties of the solution operator Stu0 = u(x, t).

• Well-posedness in a suitable space : Existence, Uniqueness, Continu-
ous dependence on the data

• Qualitaive properties of solution operator, Stu0(x) = u(x, t) : Smooth-
ing properties, Compactness properties, Asymptotic large time behaviour,
etc .

• 1. Existence : When f in nonlinear, even for smooth initial data the
solution (2.1) and (2.3) may develop discontinuities in finite time. To get
global existence of solutions, one should work within a space of discontin-
uous functions and interpret solution of (2.1) in distributional sense:∫ ∞

0

∫ ∞
−∞

[u(x, t)φt(x, t) + f(u(x, t)φx(x, t)]dxdt+

∫ ∞
−∞

u0(x)φ(x, 0)dx = 0

for all C∞0
(
R1 × [0,∞)

)
.

It is easy to see that if u is a C1 solution then it is weak solution.
Weak formulation described above give very serious restrictions on the disconti-

nuities on solutions :

Lemma : (Rankine-Hugoniot conditions) A piece wise smooth function u is a
weak solution iff along any curve of discontinuity x = β(t), the Rankine Hugoniot
condition

−dβ
dt

[u(β(t)+, t)− u(β(t)−, t)] + [f(u(β(t)+, t))− f(u(β(t)−, t)] = 0
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is satisfied and in the region of smoothness the equation is satisfied in the classical
sense.

Proof : Consider a curve of discontinuity and take point (x0, t0) on it. Take a
nbd Bε(x0, t0) of this point such that except along this curve the solution is smooth.
Let D− and D+ are the points on this nbd which is left and right of this curve. By
weak formulation, for φ ∈ C∞c (Bε(x0, t0)),∫
D

(uφt + f(u)φx)dxdt =

∫
D+

(uφt + f(u)φx)dxdt+

∫
D−

(uφt + f(u)φx)dxdt = 0.

By Green’s theorem,∫
D±

(uφt + f(u)φx)dxdt =

∫
D±

((uφ)t + (f(u)φ)x)dxdt

=

∫
∂D±

(−uφdx+ f(u)φ)

=

∫
∂D±

(−udx+ f(u)dt)φ

Using this and taking into account the orientation of integration, we get∫
{−dβ

dt
[u(β(t)+, t)−u(β(t)−, t)]+[f(u(β(t)+, t))−f(u(β(t)−, t)]}φ(β(t), t)dt = 0

for every φ ∈ C∞c (Bε(x0, t0)). This gives the R-H condition.

Remark : To verify u is a weak solution it is enough to check
(i). In the region of smoothness, ut + (f(u))x = 0 in the classical sense.
(ii). Along discontinuity curve, the R-H condition is satisfied.

• 2. Uniqueness: Weak solutions are not unique, to choose the physical
solution, we need to impose admissibility criteria on the solution. Inviscid
system in itself is not complete. A well posed theory for the system cannot
ignore the small scale features of a given physical problem.

• 3. Continuous dependence on data: Need to identify the right function
space and the right topology.
• 4. Qualitative properties : Regularity, compactness and asymptotic

behaviour, etc are related to irreversibility of the process
• In the case of scalar equations ie n = 1, there are several approaches.

Calculus of variation and Hamilton Jacobi theory, nonlinear semi group
theory, vanishing viscosity method, generalized characteristics, and various
finite difference and finite volume approximations are some of them. We
discuss some of them and theories of well posedness of the initial value
problem in the space BV ∩L1 with different types of admissibility criteria.
We discuss some of them in detail.
• For n = 1 and k = 1 we have a complete theory starting with the work of

Hopf [1950], and Lax[1957], which we will discuss in this course. This covers
the case when the flux is convex. Krushkov [1970] developed a beautiful
theory for scalar conservation laws for several space variables without any
convexity conditions on the flux. We present that theory later in the course
for one space dimensional case.
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Now we discuss some generalities for systems and introduce some definition and
notations.

2.2. Strictly hyperbolic systems: For system n > 1, when (2.1) is strictly hy-
perbolic, initial value problem is well studied starting with the work of Lax (1957)
Glimm (1965), and Liu(1975).

• We say the system (2.1) is strictly hyperbolic, if the eigenvalues of the
Jacobian matrix Df(u) of the flux f are real and distinct eigenvalues :

λ1(u) < λ2(u) < ... < λN (u).

Then the corresponding left {lj(u), j = 1, 2, ..N} and right eigenvectors
{rj(u), j = 1, 2, ...N} form a complete set for RN for each u ∈ Ω.
• We say the characteristic field λk is genuinely nonlinear in Ω if∇λk(u).rk(u) 6=

0 for any u ∈ Ω.
• We say λk is linearly degenerate in Ω if ∇λk(u).rk(u) = 0 for all u ∈ Ω
• One way to construct solution to a general initial value problem (2.1) and

(2.3) is using simpler problem called Riemann problem.

Definition: When initial data (2.3) takes a special form ie., consists of two
constant states u−, u+ separated by a single discontinuity at x = 0:

u(x, 0) =

{
u−, if x < 0,

u+, if x > 0
(2.4)

the problem (2.1) and (2.4) is called the Riemann problem.
Remark : Plane waves play an important role in linear theory of hyperbolic

equation because superposition of these special solutions gives solutions to general
initial value problem. Even though in nonlinear case, linear superposition is not
valid, special solutions given by the the Riemann problem is fundamental because
they are the building block in the construction of solution of (2.1) with general
initial conditions, for example using Glimm’s scheme or front-tracking algorithm.

2.3. Solution of Riemann problem. Here we take the case when the system is
strictly hyperbolic, and each characteristic field are either genuinely nonlinear or
linearly degenerate.

Definition: A centered k - rarefaction wave is is a Lipschitz continuous solution
of (2.1) of the form

u(x, t) =


u−, if x < λk(u−t,

Φ(x/t), ifλk(u−)t < x < λk(u+)t

u+, if x > λk(u+t

connecting u− to u+ such that λk(Φ(ξ)) increasing in ξ.
Definition : A centered k-shock is a solution of (2.1) with a discontinuity along

a line x = st

u(x, t) =

{
u−, if x < st,

u+, if x > st

connecting u− to u+. We take the admissibility condition of Lax [1957]

λk−1(u−) < s < λk(u−), λk(u+) < s < λk+1(u+),
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From the weak formulation, we have seen that the triple (s, u−, u+) must satisfy
the Rankine-Hugoniot condition

f(u+)− f(u−) = s(u+ − u−).

Contact discontinuity : If λk is linearly degenerate a k-contact discontinuity
is a solution of (2.1) with a discontinuity along a line x = λk(u−)t :

u(x, t) =

{
u−, if x < λk(u−t,

u+, if x > λk(u−t.

Main question towards the construction of solution is the following. Fix u−, what
are the states u which can be connected to the right by a centered rarefaction
wave, shock wave or contact discontinuity? The answer is given by the following
Theorem (Lax): Suppose the k-th characteristic field is genuinely nonlinear in Ω
and normalized so that ∇λk(u).rk(u) = 1. Let u− ∈ Ω. Then for a > 0 sufficiently
small,

• there exists a one parameter family of states u = u(ε), 0 < ε < a, u(0) = u−
(called k- rarefaction wave curve) which can connected to u− from the
right by a k- rarefaction wave. The parametrization can be chosen such
that u′ = rk, u

′′ = r′, where ′ denotes differentiation w.r.t ε
• There exists a one parameter family of states u = u(ε),−a < ε < 0, u(0) =
u− (called k -shock wave curve)which can connected to u− from the right
by a k- shock wave with speed s(ε). The parametrization can be chosen
such that u′(0) = rk(u−, u

′′(0) = r′k, s(0) = λk(u−), s′(0) = 1/2 where ′

denotes differentiation w.r.t ε
• We denote Uk(ε) the combined shock - rarefaction wave curve passing

through u−, ε < 0 corresponds to shock curve and ε > 0 corresponds
to rarefaction curve. The two curves have second order contact at ε = 0

Suppose the k characteristic field is linearly degenerate.

• Then there exists a curve u = Uk(ε), |ε| < a such that u− can be connected
to Uk(ε) by a contact discontinuity.

Theorem (Lax) : Given u− in Ω, there exists a nbd Ω(u−) such that for any
u+ in Ω(u−) the Riemann problem (2.1) and (2.4) has a unique solution consisting
of at most (n + 1) constant states separated by shocks, rarefaction or contact
discontinuities.

Proof : For each k, k = 1, 2, ...n, there exists a one parameter family of trans-
formation

T kεk :→ Rn, |εk| < a

which is a C2 and any u in Ω can be connected to Tεku on the right by a shock,
rarefaction wave or a contact discontinuity.

U = {(ε1, ε2, ...εn) : |εi| < a}
Fix u−. Consider the composite transformation T : U → Ω1(u−,Ω1(u− an open set
subset of Ω containing u−.

T (ε) = TnεnT
(n−1)
ε(n−1)

...T 1
ε1

Define F (ε) = T (ε)−u−. We see that F (0) = 0 and F (ε) =
∑n
j=1 εjrj(u−)+O(|ε|2).

Thus Jacobian matrix of F at ε = 0 is invertible. By inverse function theorem F is
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a diffeomorphism from a nbd of 0 ∈ U to a nbd of u−. So for |u−−u+| small there
exists a unique ε = (ε1, ...εn) such that T (ε) = u+.

Remarks on well-posed for strictly hyperbolic systems:

• Glimm (1965) proved a global existence theory using Glimm’s scheme.
Uniqueness and stability results were proved much later.
• By a series of papers Bressan, Liu and Yang (1999), Bressan, Crasta and

Piccoli(2000) (see also some other references there) completed a wellposed-
ness theory (existence, uniqueness and continuous dependence on initial
data), for strictly hyperbolic systems with characteristic fields either gen-
uinely nonlinear or linearly degenerate when the initial data are L1 func-
tions with small total variation.
• There are counter example which shows that for large data BV norm can

blow up in finite time and hence a global existence theorem within the entire
space of BV functions with bounded variation cannot hold in general.
• When systems are not strictly hyperbolic and/ or solutions with strong

shock, the question of welpossedness is largely open.
• For general strictly hyperbolic case there are well posedness results if

data is small in the space of BV functions based on a particular admissibility
criteria. Although admissibility criteria are strongly interrelated but they
are not equivalent, as we see later for the scalar case. There are may
different selection principles and hence there are many theories of well-
posedness and different theory may give different solution.

2.4. Admissibility: We have noted that from mathematical and physical reasons
all types of discontinuous solutions are not admissible. The major question is
to formulate this admissibility criteria and this is where small scale features
ignored while deriving the first order system (1) need to be taken into
account in the formulation of well posedness theory.

In many physical cases,(2.2) admits global in time smooth solution uε that are
uniquely determined by their initial data. So a natural candidate for the inviscid
system (2.1)is

u := lim
ε→0

uε

This selection principle is well known for scalar conservation laws and some spe-
cial systems. For strictly hyperbolic case the analysis was carried out recently by
Bianchini and Bressan (2005).

• In the construction of solution to Riemann problem, first construct k-wave
curve, k = 1, 2, ...n condition. The set of all states u which can be connected
from a fixed state u− by a k-rarefaction wave is a curve and those states
which can be connected by a k-shock with admissibility is a also a curve
and their union is called k-wave curve.

If u+ is in the k- wave curve through u− for some k then we have a
k-rarefaction or k-shock depending on the position of u+ on the curve.
Otherwise find u1, u2, ...ul on wave curves of different families so that one
can connect u− u1, by a 1-wave u1 to u2 by a 2-wave ...ulto u+ by an
l-waves.
• Remark . Being constructive, this approach yields very detailed structure

of solutions if successfully carried out. The difficulty is that it is hard to
know the admissible shocks to enable this construction.
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We list few of the commonly used criteria . Once we have this selection
principle we can solve Riemann problem at least when the states u− and
u+ are near by.
• Viscosity admissibility criteria: Viscosity admissibility criteria seeks

to characterize admissible solutions of (1) as the ε → 0 limits of smooth
solutions of parabolic systems

ut + (f(u))x = εuxx

In the language of continuum physics, (works of Stokes(1848),Rankine(1870),
Rayleigh(1911) in isothermal flows), admissibility is to be decided by vi-
sualizing the elastic medium as a limiting case in an appropriate class of
media with internal dissipation.

This leads to traveling wave criteria for shock. A discontinuity of the
form is admissible if the states u± can be connected by a traveling wave
solution u(x, t) = Φ((x− st)/ε) of the above parabolic system

−sΦ′ + f(Φ)′ = Φ′′,Φ(±∞) = u±

• Entropy admissibility condition: This condition is due to Godunov(1961),
Lax(1971) and seeks to get an admissibility directly through the system.

η(u)t + (q(u))x ≤ 0

for pairs of functions η called entropy, q called entropy flux, satisfying
Dq(u) = Dη(u).Df(u), η convex. The domain (−∞,∞)× [0,∞) of any BV
solution u of (2.1), may be decomposed into the union of 3 pairwise disjoint
sets C the points of approximate continuity, S the points of approximate
jump and a set I whose one-dimensional Hausdorff measure zero. With
each point (x0, t0) on S, there is an associated s such that u attains distinct
approximate limits u− and u+ on either side of the the line x = x0+s(t−t0)
at (x0, t0) and the entropy condition reduces to

q(u+)− q(u−)− s(η(u+)− η(u−)) ≤ 0

for points on the set S
• Lax’s Shock condition:

An early example of a shock admissibility criterion in gas dynamics is
that only compressive shocks are admissible. Riemann (1860) observed that
this is equivalent to the requirement that shock be supersonic relative to
the state at front and subsonic relative to the state on the back.

Lax(1957) fomulated this as a general shock condition,

λk−1(u−) < s < λk(u−), λk(u+) < s < λk+1(u+),

for genuinely nonlinear case. Liu (1975) extended this to a comprehensive
shock admissibility criterion which work for more general characteristic fiels
which is degenerate at isolated points.

All these are for waves of moderate strength in general.
• Wave fan admissibility condition :

This is due to Dafermos (1973) and is based on the observation that
admissibility criteria should be compatible with translation and dilations
of coordinates which leave the system invariant. So admissibility should
be tested for Riemann problem. ie solutions of the form u(x, t) = Φ(x/t),
which represents wave fans emanating from the origin at time t = 0. Wave
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fan admissibility criteria may be motivated by adding a variable viscosity
to the inviscid system (1):

ut + (f(u))x = εtuxx

which is invariant under dilation of co-ordinates. With Riemann type initial
data (3), this reduces to

−yΦ′ + (f(Φ))′ = εΦ′′

Φ(−∞) = Ul,Φ(∞) = Ur

This is called self similar viscosity approximation.
• Entropy rate admissibility criteria says that a wave fan ie. a solution

of the (1) and (3) of the form u = Φ(x/t) is admissible if PΦ ≤ PΦ1
for any

other wave fan u = Φ1(x/t) with the same end states as Φ. where

PΦ =
∑
y q(Φ(y+))− q(Φ(y−))

−y[η(Φ(y+))− η(Φ(y−))]

where the sum is over at most countable set of points y of jump discontinuity
of Φ.

Remarks on wellposedness:
• We have listed few admissibility conditions among many. Viscous shock

profile and the Lax/Liu- condition are sufficiently poweful to give unique-
ness for strictly hyperbolic and shocks are of moderate strength.

3. Linearly degenerate case

First we consider linearly degenerate conservation laws. This is the case when
f(u) = Au, A, a constant n×n matrix with of course strict hyperbolicity conditions
and complete set of left and right eigenvectors as before but in the present case does
not depend on the unknown u(x, t). We consider initial value problem.

ut +Aux = 0

with initial condition
u(x, 0) = u0(x)

Any function u(x, t) can be decomposed in the directions rj : u(x, t) =
∑n
j=1 cj(x, t)rj

with cj(x, t) = lj .u(x, t). It is easy to see that u(x, t) is a solution of the system
with initial conditions iff cj(x, t) solves

(cj)t + λj(cj)x = 0, cj(x, 0) = lj .u0(x).

By the method of characteristics we get its solution is

cj(x, t) = lj .u0(x− λjt).
so that the solution of the system is given by

u(x, t) =

n∑
j=1

(lj .u0(x− λjt))rj .

Now if we look at the solution at (x, t), they are sum of jth components of signals at
initial point (yj , 0) and propagating along the jth characteristics x− λjt = yj , j =
1, 2, ...n.

Properties of solution operator Stu0 =
∑n
j=1(lj .u0(x− λjt))rj
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• It easy to see that if u0 ∈ CkB the space of k times continuously differential
with bounded derivatives the solution also is in the same space, unique and
depends continuously on the data.
• Solution is as smooth as initial data.
• For each t > 0, the shape of lj .u(., t) is same as lj .u0(x) except for trans-

lation of its position by λjt and supx∈R1 |u(x, t)| = supx∈R1 |u0(x)| and so
the solution operator Stu0(x) = u(x, t) is invertible and in fact is unitary
and St : t ∈ R1 form a group
• Signals propagate along the characteristics x = λjt+ y and speed of prop-

agation is finite and support spreads linearly.
• Singularities propagate along characteristics x = λjt+ y

3.1. Solution for the Riemann problem. Theorem : The Solution of the
Riemann problem for the linear system with left and right states, (u−, u+) is given
by the following

u(x, t) =


u− if x < λ1t

ωiif, λit < x < λi+1t, i = 1, 2, ...n− 1,

u+, if, x > λnt

where ωi = u− +
∑i
j=i lj .(u+ − u−)

Proof: Proof follows from the general solution obtained earlier, looking carefully
the characteristic speeds.

Effects of viscosity.

ut +Aux =
ε

2
uxx

with initial condition

u(x, 0) = u0(x).

Here again we seek solution decomposed in the characteristic directions u(x, t) =∑n
j=1 cj(x, t)rj with cj(x, t) = lj .u(x, t). It is easy to see that u(x, t) is a solution

of viscous system iff cj(x, t) solves

(cj)t + λj(cj)x =
ε

2
(cj)xx, cj(x, 0) = lj .u0(x).

whose solution is

cj(x, t) =

∫
R1

lj .u0(y)dµx,t
ε(y).

where

dµx,t
ε(y) =

1

(2πtε)1/2
e−

(x−at−y)2
2tε

is the Gaussian measure on R1. Note that the solution of (??) and (??) is given by

uε(x, t) =

n∑
j=1

∫
R1

(lj .u0(y))dµx,t
ε(y)rj . (3.1)

Even if u0(x) a bounded measurable function its solution given by (3.1) is infin-
itely differentiable solution.

Properties of solution operator Sεtu0 = uε(x, t)
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• The solution operator maps space of bounded measurable space to bounded
C∞ space.
• Sεt is compact and so not invertible. It is a smoothing operator.
• Speed of propagation is infinite.
• limε→0 S

ε
tu0(x) = u(x, t) exits almost every where.

• Sεt → δy=x−at in the sense of measures as ε → 0. In particular if u0 is
bounded and continuously differentiable, limε→0 S

ε
tu0(x)→< δy=x−at, u0 >=

u0(x− at) = Stu0(x), which is the classical solution for the inviscid case.

This method of constructing solutions of first order equations from an approxima-
tion by diffusion term is generally called vanishing diffusion method. This method
is particularly useful to treat non smooth solution of the first order equations.

Remarks : First we note that for each fixed (x, t), t > 0, the support of the mea-
sure µε(x,t)(y) is R1 where as the limiting measure is concentrated on the minimizer

of

min
y∈R1

(y − x+ at)2

2t
.

We see a similar situation in nonlinear case (Burgers equation).
Weak solution : Assume u0 is BV (R1) and uε0 = u0 ∗eε, eε, being the standard

Friedrichs mollifier. Let uε is the solution of the diffusion system with initial data
uε0. Then∫∞

0

∫∞
−∞ uεφt +Auεφxdxdt +

∫∞
−∞ uε0(x)φ(x, 0)dx = −ε

∫∞
0

∫∞
−∞ uεφxxdxdt

for all Cc(R
1 × [0,∞)). Taking limits as ε→ 0, we get∫ ∞

0

∫ ∞
−∞

u(x, t)φ(x, t)t +Au(x, t)φ(x, t)xdxdt+

∫ ∞
−∞

u0(x)φ(x, 0)dx = 0

for all φ ∈ Cc(R1 × [0,∞)).
Note that in the language of distribution theory,

ut(φ) = −
∫ ∫

uφtdxdt, ux(φ) = −
∫ ∫

uφxdxdt

for φ ∈ Cc(R1 × (0,∞)). So the above equation says

(ut +Aux)(φ) = 0,

for all φ ∈ Cc(R1×(0,∞)). In other words u is a distribution solution of ut+Aux =
0.

Remarks :

• In the passage to the limit as ε tend to 0, Sεt goes to St. St does not posses
this compactness and the smoothing properties of the Sεt for ε > 0.

• Indeed, St defined on the space of BV functions,

Stu0 =

n∑
j=1

(lj .u0(x− λjt))rj .

defines a Unitary group and propagate signals and singularities along the
characteristics. This is a linear phenomenon.

• However for nonlinear conservation laws and hyperbolic systems of equa-
tions nonlinearity preserves certain compactness and smoothing properties,
in the passage to vanishing viscosity limit.
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4. Burgers equation

We start with the inviscid Burgers equation which is a simple model for the
nonlinear wave propagation phenomenon.

ut + (
u2

2
)x = 0 (4.1)

with initial condition

u(x, 0) = u0(x). (4.2)

The speed is λ(u) = u and it depends on the unknown u and λ′(u) = 1 so the
equation is genuinely nonlinear.

The equation says along the characteristic curve

dx

dt
= u(x, t), x(0) = y,

du

dt
= 0,

u is constant along the characteristics which is a straight line . Solving we get

x = u0(y)t+ y, u(x, t) = u0(y)

From these relations we have u(x, t) = u0(x− u0(y)t).

• This gives an implicit solution of the initial value problem

u(x, t) = u0(x− u(x, t)t)

which can be solved at least for small time by the implicit function theorem.
• Another more useful way is to interpret the solution in the following way.

u(x, t) =
x− y(x, t)

t
,

where y = y(x, t) is a solution of the equation x = u0(y)t+ y, which exists
for small t > 0.
• One important remark here is that y(x, t) can be interpreted as the mini-

mizer of

min
−∞<y<∞

[

∫ y

0

u0(z) +
(x− y)2

2t
]

because Lagrange equation is nothing but x = u0(y)t+y. Minimizers y(x, t)
exists for each fixed (x, t) but may not be unique. We use this observation
to construct global solution.

Non existence of smooth solutions : Note that unlike linear case here the
characteristic speed depend on the unknown u.

• Geometrical reason is the characteristics may meet in finite time and
then the solutions becomes multiple valued.
• Analytical reason is that while u remains bounded, its first order deriva-

tives becomes infinity. Indeed

ux =
u′0(y)

1 + u′0(y)t

Now if u′0(x) < 0 for some x, ux blows up at T = − 1
u′0(y) , where y0 is the

point is where u′0(y) is minimum. At this point ux becomes infinity. Thus
u remains bounded but its first order derivatives becomes infinity in finite
time.
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For Global solutions, we use a formulation which does not require classical deriva-
tives (distributions).

A locally integrable function u is said to be a weak solution of the (??) and (4.2)
if ∫ ∞

0

∫ ∞
−∞

u(x, t)φ(x, t)t +
u2(x, t)

2
φ(x, t)xdxdt+

∫ ∞
−∞

u0(x)φ(x, 0)dx = 0

for all φ ∈ Cc(R1 × [0,∞)).
Entropy conditions : Solution in the weak solution is not unique. To find

the unique physical solution we impose additional conditions. Here we discuss the
following selection principles

• 1.Shock in equalities (stability reason)
• 2.Vanishing viscosity method (takes into account the small scale effects

neglected in the inviscid level)
• 3.Mathematical entropy condition (additional conservation laws)

For scalar convex case all of them are equivalent for one space variable case.

4.1. Hopf’s work on Burgers equation : Initial value problem is to find solution
to (??) and (4.2), Hopf considered the equation with a viscous term

ut + (
u2

2
)x =

ε

2
uxx, u(x, 0) = u0(x) (4.3)

and solved it explicitly.
Theorem : For fixed (x, t), t > 0, x ∈ R1 and given bounded measurable

function u0(x) define the measure dµε(x,t)(y) defined by

dµε(x,t)(y) =
e−

1
ε [
∫ y
0
u0(z)dz+

(x−y)2
2t ]dy∫∞

−∞ e−
1
ε [
∫ y
0
u0(z)dz+

(x−y)2
2t ]dy

then an explicit solution of the initial value problem for Burgers equation with
viscous term is given in the form

uε(x, t) =

∫
Rn

(x− y)

t
dµε(x,t)(y).

Proof : Hopf used the the Hopf-Cole transformation

uε = −εv
ε
x

vε

and reduced the problem to the linear heat equation

vt =
ε

2
vxx, v(x, 0) = e−

1
ε

∫ x
0
u0(z)dz

Solving for vε and substituting in the Hopf-Cole transformation, we get the the
explicit formula for uε as in the theorem.

The inviscid solution is constructed by passing to the limit as ε goes to zero.
Theorem: Assume u0 is bounded measurable. For each fixed t > 0, except for

a countable x, there exits a unique minimizer y(x, t) for

min
−∞<y<∞

[

∫ y

0

u0(z)dz +
(x− y)2

2t
]
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The measure associated with the viscous equation converges to a δ measure con-
centrated at this minimizer y(x, t), namely for any continuous function g(y) on
R1 ∫

g(y)dµε(x,t)(y)→< δy(x,t), g(y)

The limit function

u(x, t) =< δy(x,t),
(x− .)
t

>=
(x− y(x, t)

t

is well defined a.e. and BV function and solves the problem (??) and (4.2) in the
weak sense. Further for each t > 0, and x ∈ R1, u(x+, t) and u(x−, t) exits and
satisfies the entropy condition u(x−, t) ≥ u(x+, t).

Proof of the theorem: By an application of the theorem and Lemma in the
appendix, we get

lim
ε→0

uε(x, t) =
(x− y(x, t)

t
, a.e(x, t)

Now to show that the solution satisfies the equation in weak sense,∫ ∞
0

∫ ∞
−∞

(uεφt +
(uε)2

2
φx)dxdt+

∫ ∞
−∞

u0(x)φ(x, 0)dx = − ε
2

∫ ∞
0

∫ ∞
−∞

uε(x, t)dxdt

Using the fact that uε is bounded, an application of dominated convergence theorem
gives the result.

To show u satisfies the entropy in equality, we just observe that y−(x, t) ≤
y+(x, t), so that

u(x−, t) =
x− y−(x, t)

t
≤ x− y+(x+, t

t
Remarks

• Here we remark that a little computation shows that viscous solution can
be written in the form

uε(x, t) =

∫
Rn

u0(y)dµε(x,t)(y).

and if u0 is Lipschitz continuous, then the entropy solution can also be
written as

u(x, t) =< δy(x,t), u0(y) >

• With this it easily follows that Hopf’s formula gives an extension of the
solution obtained by the method of characteristic for smooth region to non-
smooth region as the derivative condition for the minimizer is the same as
the equation of the characteristic x = u0(y)t+ y.
•

Sεtu0 =< µε(x,t)(y), u0 >

defines a semigroup, compact and hence non-invertible. It easily follows
that

Stu0 =< δy(x,t), u0 >

defines a semigroup, compact and hence non-invertible.
• Compactness is a property usually associated with parabolic equations.

Unlike in the linear case, this property is preserved as ε → 0. The reason
for this is the rate of energy dissipation does not tend to zero as ε→ 0, in the
nonlinear case where as for linear case it goes to zero.(This can be easily seen
by following intuitive argument d

dt

∫
(uε)2dx = −ε

∫
|uεx|2dx. Shock layer
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has thickness ε and in the layer shape is traveling wave wε(x, t) = w(x−stε )

where as for the linear case it is transition layer wε(x, t) = w(x−st
ε1/2

) has

thickness, ε1/2.)
• Nonlinear semigroup St preserve certain regularizing properties of the of
Sεt > 0 in the limit as ε→ 0
• Solution decays at the rate of O(t−1/2)

An Example;Riemann problem: Consider the Riemann initial data,

u(x, 0) =

{
u−, if x < 0,

u+, if x > 0

with u− 6= u+. Then the function

u(x, t) =


u−, if x <

(u− + u+)

2
t,

u+, if x >
(u+ + u−)

2
t

is a weak solution to inviscid Burgers equation with given data but is the one given
by Hopf’s formula only for the case uL ≥ uR. The trouble with this solution for the
case ul < uR is that the characteristics emerge from the shock and thus violates the
entropy condition. Indeed, Hopf’s solution for the case uL < uR, is the continuous
rarefaction solution

u(x, t) =


u−, if x < u−t,

x/t, ifu−t < x < u+t

u+, if x > u+t

4.2. General Convex conservation laws -Lax’s formula. Hopf’s work was
extended by Lax [1957] for the convex conservation laws

ut + f(u)x = 0, x ∈ R1, t > 0

with initial condition at t = 0

u(x, 0) = u0(x)

where the flux function f is strictly convex with super linear growth at infinity ie.,

f ′′(u) > 0,
f(u)

|u|
→ ∞

Given u0, for fixed (x, t) introduce a family of probability measures

dµε(x,t)(y) =
e−

1
ε θ(x,y,t)dy∫∞

−∞ e−
1
ε θ(x,y,t)dy

,

where

θ(x, y, t) =

∫ y

0

u0(z)dz + tf ∗ (
(x− y)

t
)

Lax [1957] showed the following result.
Theorem: Let u0 is bounded measurable. Then for each t > 0, except for a
countable x ∈ R1, dµε(x,t)(y)→ δy(x,t) in measure, where y(x, t) is the minimizer of

U(x, t) = min
−∞<y<∞

θ(x, y, t)
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and the function u(x, t) defined by

u(x, t) = (f∗)′(
(x− y(x, t))

t
)

is well defined BVllc function and is a weak solution of the initial value problem.
Further u(x−, t) and u(x+, t) exists at every point and at the point of discontinuity
satisfies the entropy inequality

u(x−, t) > u(x+, t)

Proof: Let us define uε, f ε, V ε, U ε by

uε(x, t) =
∫∞
−∞ f ∗′ ( (x−y)

t )dµε(x,t)
f ε(x, t) =

∫∞
−∞ f(f ∗′ ( (x−y)

t ))dµε(x,t)
V ε(x, t) =

∫∞
−∞ e

−1
ε θ(x,t,y)dy

U ε = − 1
ε log(V ε)

where we have used the identity f(f ∗′ (s)) = s(f ∗′ (s)) − f ∗ (s). It easy to see
that uε = U εx and f ε = −U εt , so that U εt + f ε = 0. Taking derivative w.r.t. in this
equation we get

uεt + f εx = 0.

Now take any φ ∈ C∞c (R× (0,∞) multiply the equation and integrate by parts, we
get ∫ ∞

0

∫ ∞
−∞

(uεφt + f εφx)dxdt = 0.

Now apply the theorem at the appendix and a result analogous to the Lemma for the
minimizer y(x, t) for general convex f ( which very similar to the case f(u) = u2/2
done in the appendix) to get the conclusion of the theorem.

This solution satisfy the entropy condition easily follows from the increasing
nature of y(., t) and f∗′.

Finally the solution satisfies initial condition follows from the estimate

|U(x, t)− U(x, s)| ≤ C|t− s|, |U(x, t)−
∫ x

0

u0(z)dz| ≤ C|t|, 0 < s < t

which is easy to get. Here C is a constant depends only on f(u) and ||u0||L∞ Details
can be found in Lax (1957).

4.3. Important Remarks : Entropy solutions constructed above has some impor-
tant structure properties we list some of them here. Also we comment on general
conservation laws.

• As in the case of Hopf’s solution, the present solution operator has the
compactness and the regularity properties.Stu0 = u(x, t), maps bounded
subsets of L∞ supported in a common bounded set to compact sets of L1.
• Characteristic curves drawn in the backward direction cannot intersect any

shock or any other characteristics. So every point can (x, t) can be con-
nected by a characteristic to a point on the initial line namely y(x, t).
• If additionally f(0) = 0 and u0 is bounded measurable with compact sup-

port, then support of entropy solution u(., t)spread at the rate O(t
1
2 ) and

sup{|u(x, t)| : x ∈ R} decays at the rate O(t
−1
2 ) as t goes to infinity

• If the flux is not convex there is no explicit formula for the entropy solution.
One way to construct solution is by vanishing viscosity solution.
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• If the flux f(u) is not convex, Lax’s condition is not enough to select the
unique weak solution. Oleinik condition is one way to pick the unique
solution: This requires

f(u)− f(u−)

u− u−
≤ s ≤ f(u)− f(u+)

u− u+

for all u in between u− and u+. This says that if u− > u+, the graph of
f in (u+, u−) should lie below the the chord connecting (u+, f(u+)) and
(u−, f(u−)) and if u− < u+, the graph of f in (u−, u+) should lie above
the the chord connecting (u+, f(u+)) and (u−, f(u−)).
• For convex flux, Oleinik condition is equivalent to Lax’s entropy in equality.
• Semi group given by weak solutions satisfying Olienik condition is L1 con-

tractive. This was proved by Keyfitz (1971).

5. General scaclar conservation laws in one space variable
-vanishing viscosity

Here we consider general scalar conservation laws

ut + f(u)x = 0, x ∈ R1, t > 0 (5.1)

with initial condition

u(x, 0) = u0(x). (5.2)

We assume f : R1 → R1 is C1.
Definition : A map (η, q) : R1 → R2 is called an entropy-entropy flux pair for the
equation if η and q are related by

η(u)′′ ≥ 0, , q(u)′ = η(u)′f(u)′

Definition : A locally integrable function is called an entropy weak solution of the
initial value problem if∫ ∞

0

∫ ∞
−∞

η(u(x, t))φ(x, t)t + q(u(x, t))φ(x, t)xdxdt+

∫ ∞
−∞

η(u0(x))φ(x, 0)dx ≥ 0

(5.3)
for all φ ∈ Cc(R1× [0,∞)) with φ ≥ 0 and for every entropy entropy flux pair (η, q).

Remark: By taking η(u) = ±u, q(u) = ±f(u), we see that entropy weak
solution is a weak solution of the initial value problem.

Theorem : Assume u0 is bounded measurable function which of bounded vari-
ation. Let uε is the solution of the initial value problem

ut + f(u)x = εuxx, x ∈ R1, t > 0 (5.4)

with initial condition

u(x, 0) = u0 ∗ eε(x), (5.5)

where eε is the standard Friedrichs mollifier. Then there exists smooth global
solution uε, ε > 0 and there exists u(x, t) which is pointwise limit of uε. This limit
function is an entropy weak solution of (5.1) and (5.2). Further TV u(., t) ≤ TV (u0).

Proof (sketch):

• Step1. Standard fixed point argument give a C2 solution for the parabolic
approximation. Also the estimates

||uε||∞ ≤ ||u0||∞,
∫ ∞
−∞
|uεx|dx ≤ TV (u0),

∫ ∞
−∞
|uε(x, t)−uε(x, s)|dx ≤ L|t−s|, t > s > 0
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Where L depends only on |f ′(u)| and ||u0||L∞ Apply Helly’s theorem to
get a subsequence εkand a function u such that uεk converge point wise a.e.
• Step 2. The limit satisfy the entropy condition.

Multiply the PDE with η(u) and rewrite, we get

η(uε)t + q(uε)x = ε[η(uε)xx − η′′(uε)(uεx)2] ≤ εηxx(uε)

Now take nonnegative test function φ multiply integrate by parts we get,∫∞
0

∫∞
−∞ η(uε(x, t))φ(x, t)t + q(uε(x, t))φ(x, t)xdxdt+

∫∞
−∞ η(u0(x))φ(x, 0)dx

≥ −ε
∫∞

0

∫∞
−∞ η(uε(x, t))φ(x, t)xx.

(5.6)
An application of dominated convergence theorem gives∫ ∞

0

∫ ∞
−∞

η(u(x, t))φ(x, t)t + q(u(x, t))φ(x, t)xdxdt+

∫ ∞
−∞

η(u0(x))φ(x, 0)dx ≥ 0

(5.7)
for all φ ∈ Cc(R1 × [0,∞)) with φ ≥ 0 and for every entropy entropy flux
pair (η, q).
• Step 3. In the above (η, q) can be replaced by the Krushkov entropies
ηk(u) = |u − k|, qk(u) = sgn(u − k)(f(u) − f(k)). This follows by an
approximation. In this case the entropy condition becomes∫ ∞

0

∫ ∞
−∞
|u−k|φt+sgn(u−k)(f(u)−f(k))φxdxdt+

∫ ∞
−∞
|u0(x)−k|φ(x, 0)dx ≥ 0,

(5.8)
for all k ∈ R and for all nonnegative test function φ.
• Step 4. Any weak solution which satisfies Krushkov entropy conditions is

unique (see hand written notes titled Krushkov’s uniqueness theorem).
• Step 5. All the sub sequential limit satisfies the Krushkov entropy condi-

tions and hence same limit by uniqueness. So the full sequence converges
and is an entropy weak solution.

5.1. Properties of the solution operator. Here the solution operator Stu0 =
u(x, t) means entropy weak solution with initial data u0.

Let u0 and v0 are two bounded measurable functions and u and v are entropy
weak solution associated with them. LetM = sup{|f ′(u)| : u ∈ [inf(u0, v0), sup(u0, v0)]},
then

• For all t > 0, and every interval [a, b], we have∫ b

a

|u(x, t)− v(x, t)|dx ≤
∫ b+Mt

a−Mt

|u0(x)− v0(x)|dx.

• If u0 − v0 ∈ L1(R1), then u(t)− v(t) ∈ L1(R1), u(t) = u(., t), v(t) = v(., t)
and ∫ ∞

−∞
|u(x, t)− v(x, t)|dx ≤

∫ ∞
−∞
|u0(x)− v0(x)dx,∫ ∞

−∞
(u(x, t)− v(x, t))dx =

∫
−∞
∞(u0(x)− v0(x))dx

• An easy consequence of this result is the following comparison theorem :
If u0(x) ≤ v0(x) a.e. x ∈ R1, then u(x, t) ≤ v(x, t) for a.e. (x, t)
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• If u0 ∈ L1,then u(t) ∈ L1 for each t > 0 and∫ ∞
−∞
|u(x, t)|dx ≤

∫ ∞
−∞
|u0(x)|dx,∫ ∞

−∞
u(x, t)dx =

∫ ∞
−∞

u0(x)dx

• If u0 is in BV (R1), then u(t) is in BV (R1) and TV (u(., t)) ≤ TV (u0).

6. Appendix

7. A useful result

Theorem 7.1. Suppose θ : Rn → R1, continuous growing at least quadratically at
∞. Suppose θ has a unique minimum at x0. Then the measure Then the measure

µε(x) =
e
−θ(x)
ε∫

Rn
e
−θ(x)
ε dx

converges weakly to δx0 as ε→ 0. Further, for any continuous function that grows
at most linearly at infinity

lim
ε→0

∫
Rn

u(x)dµε(x) = u(x0).

Proof. We observe that

µε(x) =
e
θ(x0)−θ(x)

ε∫
Rn

e
θ(x0)−θ(x)

ε dx

has the properties µε ≥ 0,
∫
µε = 1, µε → 0, exponentially as ε tends to 0. So∫

u(x)µε(x)− u(x0) =

∫
(u(x)− u(x0))dµε(x) =

∫
|x−x0|≤δ

+

∫
|x−x0|≥δ

First ε tends to 0 and then let δ tends to 0. We get the result. �

Lemma: Assume that h :→ R1 is a locally Lipschitz function which has at most
linear growth at ±∞. For fixed (x, t) : x ∈ R1, t > 0and let y(x, t) be a minimizer
for

min{ (x− y)2

2t
+ h(y)}

which may not be unique.

• Define y+(x, t) = max{y(x, t) : y(x, t)}, y−(x, t) = min{y(x, t) : y(x, t)}
• If x1 < x2, then y(x1, t) ≤ y(x2, t),
• y± are non decreasing functions of x , continuous except countable num-

ber of points and at the points of continuity, y−(x, t) = y+(x, t). Further
y−(x, t) is left continuous and y+(x, t) is right continuous

Proof : Because of the conditions on h, existence of minimizers y(x, t), for each
fixed (x, t) is clear. Let y(x1, t) = y1 and y(x2, t) = y2, then

Min[
(xi − yi)2

2t
+ h(yi)] =

(xi − yi)2

2t
+ h(yi), i = 1, 2.

We claim that

{ (x2 − y1)2

2t
+ h(y1)} <

(x2 − y2
)

2t
+ h(y), y < y1
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Now take τ , 0 < τ = y1−y
x2−x1+y1−y < 1.

(x2 − y1)2

2t
< τ

(x1 − y1)2

2t
+(1−τ)

(x2 − y)2

2t
,

(x1 − y)2

2t
< (1−τ)

(x1 − y1)2

2t
+τ

(x2 − y)2

2t

because x2−y1 = τ(x1−y1)+(1−τ)(x2−y) and x1−y = (1−τ)(x1−y1)+τ(x2−y)
Adding these two we get

(x2 − y1)2

2t
+

(x1 − y)2

2t
<

(x1 − y1)2

2t
+

(x2 − y)2

2t

Adding h(y1) + h(y) to the above inequality and adding the resulting inequality to
the very first one we get claim.

It follows that to compute the minimum we only need to consider y ≥ y1 :

min
−∞<y<∞

[

∫ y

0

u0(z)dz +
(x2 − y)2

2t
] = min

y≥y1
[

∫ y

0

u0(z)dz +
(x− y2)2

2t
] (2.6)
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