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We plan to discuss the following topics in these lectures

1. A brief introduction

2. Review of finite dimensional systems: controllability, observability etc.

3. Exact controllability of linear wave equation: Variational approach, observability in-

equality.

4. Observability inequality in 1D via Ingham’s inequality

5. Hilbert Uniqueness Method: Motivation, multiplier method, generalization.

1. Introduction

Any control problem will consists of the following:

(i) a set of equations known as state equations which we call a controlled system; this is

an input-output system. State equations involve (a) input function, called controls and (b)

output known as the state of the system, corresponding to the given input (control).

(ii) an observation of the output of the controlled system (partial information).

(iii) an objective to be achieved.

The set of equations can appear in different forms like; ODE (finite dimensional control

systems), PDE (infinite dimensional set-up), integral equations and so on. PDE’s can be of

different types; elliptic, Parabolic or hyperbolic. The controls can appear in a distributed

way, through the boundary or through a certain part of the domain, boundary etc.
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Various objectives: (i) Minimize certain criteria depending on the state and/or obser-

vations, control etc. For example minimizing the energy/cost, time or maximizing the profit

etc.(optimal control problem)

(ii) Look for controls so that the state belongs to a certain target set (controllability

problem).

(iii) Look for controls which stabilizes the state or observations (stabilization problem).

Finite Dimensional Model (Linear): This can be described by a system of ODEs of

the form dy
dt

= Ay + Bu, y(t0) = y0, where A is an n× n matrix and B is an m× n, matrix,

where m,n ∈ N and m ≤ n. Normally m < n which indicates that the number of control

variables are smaller than the number of states to be controlled. A control problem can be

stated as follows; Given a target y1 ∈ Rn, find a control u and a time T > 0 so that the

corresponding solution y = y(t) satisfies y(T ) = y1.

We will quickly review, at a later stage, some aspects of this issue which was already

introduced through other lectures.

Remark: The modelling in terms of finite and infinite dimensional (PDE) systems is very

important in practice as it has quite different properties from a control theoretic point of

view. In fact, even the analysis varies according to the class of PDE’s, for example, the

nature of PDE’s, say, whether it is parabolic or hyperbolic and its different characteristic

properties play an important role in the controllability results. In hyperbolic equations, we

have the notion of finite speed of propagation and evolution of singularities (non- smooth)

where as the heat equation posses infinite speed of propagation and smoothing effect. The

notion of Exact controllability is a suitable notion in hyperbolic problems but smoothing

effect in parabolic problems force us to look for approximate controllability results.

Again due to finite speed of propagation any given data (control) takes certain amount of

time to reach other parts of the domain and hence controllability (exact) could be achieved

only at a sufficiently large time. This is not the case in heat equations. In elliptic problems

(no time as it is equilibrium case), one look for optimal control problems. Of course optimal

control problem are also relevant in parabolic and hyperbolic equations.

Indeed, it is not possible to discuss various issues as mentioned earlier, in this short

course. We mainly, restrict ourselves to the case of wave equation (hyperbolic). We present

the variational approach and introduce Hilbert Uniqueness Method (HUM).

Examples: (1) Elliptic equation: For an electric potential φ in a domain Ω occupied

by the electrolyte, φ satisfies{
−div(a∇φ) = 0 in Ω,

−σ ∂φ
∂ν

= i on Γa,−σ ∂φ∂ν = 0 on Γr − σ ∂φ∂ν = f(φ) on Γc,
(1.1)
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where ∂Ω = Γ = Γa ∪Γr ∪Γc, Γa is anode, Γc i s cathode and Γr is the rest of the boundary.

The control function is the current density i, σ is the conductivity and f is known as cathode-

polarization function. The problem is to minimize

(P1) Inf

{
J1(φ) : (φ, i) ∈ H1(Ω)× L2(Γa) where (φ, i) satisfies (1.1)

}
where

J1(φ) =

∫
Γc

(φ− φ̄)2

The cathode is protected if the electric potential is close to a given potential φ̄ on Γc. One

has to choose the current i so that J1 is minimized.

A compromise between the cathodic protection and consumed energy can be obtained by

looking at the problem

Inf J2(φ),

where J2(φ) =
∫

Ω
(φ− φ̄)2 + β

∫
Γa
i2 for all (φ, i) ∈ H1 × L2(Γa).

(2) Parabolic Equation (Identification of a source of pollution): The concentra-

tion of a pollutant y(x, t) satisfies the parabolic PDE

∂y
∂t
−∆y + V.∇y + σy = s(t)δa in Ω× (0, T )

∂y
∂ν

= 0 on Γ× (0, T ), y(x, 0) = y0 in Ω
.

Here a ε K is the position of source of pollution in a compact set K ⊂ Ω̄ and s(t) is the

flow rate of pollution.

Assume that the pollutant y can be observed in a region O ⊂ Ω, denoted by yobs in an

interval of time [0, T ]. The problem is to find a ∈ K so that it minimizes
∫ T

0

∫
O

(y − yobs)2.

One can also have other problems, where the source is known, but not accessible and

hence s(t) is unknown. Hence find s satisfying some appropriate bounds so ≤ s(t) ≤ s, and

minimize the same functional as above.

In these lectures, we discuss the issue of exact controllability which can be formulated as

follows. Given an evolution system (described by ODE/PDE), we are allowed to act on the

trajectories (solutions) by means of a suitable control (either in a distributed way, that is

acting through the equation in the full or partial domain or through the boundary ). Then,

given a time interval [0,T] and initial and final states, the problem is to find a control such

that corresponding solution matches both the given initial state at time t = 0 and final state

at time t = T .
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The research in this area in the last few decades is very intensive. We plan to sketch few

things in the context of wave equation. We begin with the review of ODE (finite dimensional

case).

2. Controllability of finite dimensional systems

Recall the controlled system described by the ODE system

{
x′(t) = Ax(t) +Bu(t), t ∈ (0, T ),

x(0) = x0
.(2.1)

Here A is n × n real matrix, B is an n ×m real matrix, x : [0, T ] → Rn is the state and

u : [0, T ]→ Rm is the control function. Clearly m ≤ n and certainly we wish to use number

of controls as minimum as possible, that is m < n.

The solution of (2.1) is given by the variational formula

(2.2) x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds

Definition(Controllability): We say (2.1) is controllable in time T > 0, if for given

x0, x1 ∈ Rn,∃u ∈ L2(0, T ;Rm) such that x(t) satisfying (2.1) also satisfies x(T ) = x1. It is

Null controllable, if x(t) satisfies x(T ) = 0.

Proposition: 2.1: For the finite dimensional linear systems, null controllability is equiv-

alent to controllability. To see this first solve, y′ = Ay with y(T ) = x1, then solve for the

null controllability of

z′ = Az +Bu, z(0) = x0 − y(0), z(T ) = 0

. Then x = y + z satisfies x′ = Ax+Bu, x(0) = x0, x(T ) = y(T ) = x1.

Remark: Even for finite dimensional systems controllability is not always achieved.

Example: Consider the system x′1 = x1 + u, x′2 = x2. That is

x′ = Ax+Bu where A =

(
1 0

0 1

)
, B =

(
1

0

)

Clearly, u does not influence the trajectory x2(t) = x0
2e
t and hence it is not controllable.

Remark: This doesn’t mean that in a 2×2 system, one always needs two controls. There

are 2× 2 systems where one control will suffice to achieve the controllability.

Example: Consider the system x′1 = x2, x′2 = u− x1, that is
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x′ = Ax+Bu,A =

(
0 1

−1 0

)
, B =

(
0

1

)
.

Equivalently, x′′1 + x1 = u (harmonic oscillator). Unlike the previous equation, u acts

on the second equation, where both x1 and x2 are present. Hence one cannot immediately

conclude the exact controllability or otherwise.

But the present system is in fact controllable. To see this, choose any function z satisfying

the initial and final conditions, namely z(0) = x0
1, z
′(0) = x0

2, z(T ) = x1
1, z
′(T ) = x1

2. Plenty

of such functions exist. Now x1 = z, x2 = z′ with the control u = z′′+z will solve the control

problem.

Equivalent criteria via observability system:

Consider the adjoint system {
−φ′ = A∗φ, t ∈ (0, T )

φ(T ) = φT
(2.3)

where A∗ is the adjoint that satisfies 〈Ax, y〉 = 〈x,A∗y〉,∀x, y ∈ Rn and φT ∈ Rn. Multiply-

ing (2.1) by φ and (2.3) by x, we get

〈x′, φ〉 = 〈Ax, φ〉+ 〈Bu, φ〉

= 〈x,A∗φ〉+ 〈Bu, φ〉

= −〈x, φ′〉+ 〈Bu, φ〉

which gives d
dt
〈x, φ〉 = 〈Bu, φ〉. Integrating w.r.t. t, we get

〈x(T ), φT 〉 − 〈x0, φ(0)〉 =

∫ T

0

〈u,B∗φ〉.

Hence, we have the following proposition

Proposition 2.2: System (2.1) is null-controllable, that is x(T ) = 0 if and only if

(2.4)

∫ T

0

〈u,B∗φ〉+ 〈x0, φ(0)〉 = 0, ∀φT ∈ Rn.

for all φT ∈ Rn and φ is the solution to (2.3).

We remark that for all φT , x0 ∈ Rn the equation (2.4) is the optimality condition for the

critical points of the quadratic functional J : Rn → R defined by

J(φT ) =
1

2

∫ T

0

|B∗φ|2 + 〈x0, φ(0)〉,
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where φ is the solution corresponding to (2.3). Suppose φ̂T is a minimizer of J , that is

J(φ̂T ) = Min J(φT ),

then using the fact that lim
h→0

J(φ̂T + hφT )− J(φ̂T )

h
= 0 for all φT ∈ Rn (first principle), we

see that ∫ T

0

〈B∗φ̂, B∗φ〉dt+ 〈x0, φ(0)〉 = 0.

Then (2.4) implies that u = B∗φ̂ is a control driving the system x0 to 0. Thus, we have

Proposition 2.3: Suppose J has a minimizer φ̂T ∈ Rn and φ̂ be the corresponding

solution of the adjoint system (2.3) with data φ̂(T ) = φ̂T . Then u = B∗φ̂ is a control of

system (2.1) with initial data x0.

Remark: This is the variational method of obtaining a control if J has a minimum. We

also remark that by varying J , it may be possible to obtain different types of controls.

Definition (Observability): The system (2.3) is said to be observable in time T > 0 if

∃c > 0 such that

(2.5)a
∫ T

0
|B∗φ|2 ≥ c|φ(0)|2 (observability inequality)

for φT ∈ Rn and φ is the solution of (2.3). This is equivalent to

(2.5)b
∫ T

0
|B∗φ|2 ≥ c|φT |2.

The equivalence follows from the fact that the map which associates φT ∈ Rn to the vector

φ(0) ∈ Rn is a bounded linear operator with bounded inverse.

Remark: It basically tells us that, if we begins from φ(T ) = φT which evolves (reversely)

according to the adjoint equation and observe the quantity B∗φ(t) for all 0 < t < T, then

φ(0) is uniquely determined. The above inequality is equivalent to the unique continuation

principle(u.c.p)

(2.6) B∗φ(t) = 0 ∀ t ∈ [0, T ]⇒ φT = 0.

Clearly, (2.5)b implies u.c.p. Conversely, if (2.6) is true, then |φT |∗ =

(∫ T
0
|B∗φ|2

)1/2

is a

norm equivalent to the norm |φT | in Rn (finite dimensional), we have (2.5)b.

Remark: In general, in infinite dimensional case, observability inequality is not equivalent

to u.c.p. This gives different notions of controllability, namely exact and approximate. Indeed

u.c.p is weaker than observability inequality.

Theorem: System (2.1) is exactly controllable in time T if and only if (2.3) is observable

in time T.
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Proof (sketch): Assume (2.5)b. This implies the coercivity of J , i.e, lim|φT |→∞ J(φT ) =

∞. Continuity together with convexity of J , then implies the existence of a minimizer

and hence Controllability. Conversely, if (2.1) is controllable and if (2.5)b is not true, then

∃φkT ⊆ Rn, k ≥ 1 such that |φkT | = 1,∀k and
∫ T

0
|B∗φk|2 → 0 as k → ∞ which implies that

φkT → φT (along a subsequence) and |φT | = 1. Further,
∫ T

0
|B∗φ|2 = 0 where φ is the solution

corresponding to φT . From controllability, we have, ∃u ∈ L2(0, T ) such that

∫ T

0

〈u,B∗φk〉 = −〈x0, φk(0)〉, k ≥ 1

Hence

〈x0, φ(0)〉 = 0⇒ φ(0) = 0

As x0 is arbitrary, we get φT = 0 which is a contradiction because |φT | = 1.

Remark: Thus the exact controllability problem reduces to

(i) an uncontrolled system (adjoint equation)

(ii) an observation and

(iii) an observability inequality.

Kalman’s Controllability Condition: R.E.Kalman, in the 1960’s gave an equiva-

lent criteria for finite dimensional systems as: (2.1) is controllable if and only if Rank

[B,AB, ..., An−1B] = n.

Of course, this is not generalizable to infinite dimensional systems, but we follow the path

described earlier.

3. Interior Controllability of the Wave Equation

It is well known that wave equations models many physical phenomena such as small

vibration of elastic bodies and propagation of sound. It is also important to note that it is

a prototype for the class of hyperbolic equations possessing major properties of hyperbolic

equations like the lack of regularizing effects, finite speed of propagation which have very

important consequences in control theory.

We consider the problem (controlled system)


y′′ −∆y = uχω in (0, T )× Ω

y = 0 on
∑

= (0, T )× ∂Ω

y(0, ·) = y0, y′(0, ·) = y1

.(3.1)
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Here y = y(x, t) is the state and the control u = u(x, t) acts on a sub-region ω ⊂ Ω,Ω ⊆ Rn

is of class C2, T > 0 and χω is the characteristic function of ω.

Existence and uniqueness: For any u ∈ L2((0, T )×ω) and (y0, y1) ∈ H1
0 (Ω)×L2(Ω),∃!

weak solution y such that (y, y′) ∈ C([0, T ];H1
0 (Ω)× L2(Ω)) and is given by the variational

formula

(3.2) (y(t), y′(t)) = S(t)(y0, y′) +

∫ t

0

S(t− s)(0, u(s)χω(s))ds

Here S(t) is the group of isometries generated by the wave operator on H1
0×L2. Moreover,

if u ∈ W 1,1((0, T );L2(ω)), (y0, y1) ∈ (H2 ∩ H1
0 ) × H1

0 , then (y, y′) ∈ C1([0, T ];H1
0 × L2) ∩

C([0, T ]; (H2 ∩H1
0 )×H1

0 )

The wave equation is reversible in time. Hence, we can solve the equation backward in

time with the initial condition y(T, ·) = y0
T and y′(T, ·) = y1

T for 0 ≤ t ≤ T (adjoint).

Definition(Exact controllability): We say (3.1) is exactly controllable in time T, if for

every initial data (y0, y1) and final data (y0
T , y

1
T ) ∈ H1

0 × L2, ∃ a control u ∈ L2((0, T ) × ω)

such that the solution y of (3.1) also satisfies y(T, ·) = y0
T , y

′(T, ·) = y1
T .

Definition(Null controllability): The system (3.1) is said to be null controllable if

∃u ∈ L2((0, T )× ω) so that the solution y of (3.1) satisfies y(T ) = 0 = y′(T ).

Remark: Due to time reversibility, it is easy to see that the exact controllability and null

controllability are equivalent (Exercise).

Definition(Approximate controllability): The system is approximately controllable

if the reachable set R(T ) is dense in H1
0 × L2, where

R(T ) =
{

(y(T ), y′(T )) : y is a solution of (3.1), u ∈ L2((0, T )× ω), (y0, y1) ∈ H1
0 × L2

}
.

Remark: By linearity the reachable set is convex. Since Rn is the only convex dense set

in Rn, approximate and exact controllability are the same in finite dimensional case.

Variational approach and observability

For (φ0
T , φ

1
T ) ∈ L2 ×H−1(Ω), consider the backward homogeneous equation


φ′′ −∆φ = 0 in (0, T )× Ω

φ = 0 on
∑

φ(T ) = φ0
T , φ

′(T ) = φ1
T

(3.3)

We remark that, the data (φ0
T , φ

1
T ) (given) here is much weaker (i.e, in a larger space)

than the data in (3.1), one has to understand the solution using transposition method and
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∃! solution (φ, φ′) ∈ C([0, T ];L2(Ω)×H−1(Ω)). Further it satisfies

‖ φ ‖2
L∞(0,T ;L2) + ‖ φ′ ‖2

L∞(0,T ;H−1)≤ C ‖ (φ0
T , φ

1
T ) ‖2

L2×H−1(Ω) .

One can follow a similar analysis as in the finite dimensional case. Multiply (3.1) by φ,

(3.3) by y, integrate by parts to get (Exercise):

Proposition: The control u ∈ L2((0, T )×ω) drives the initial data (y0, y1) ∈ H1
0 ×L2 to

the final data (0, 0) = (y(T ), y′(T )) if and only if

∫ T

0

∫
ω

φu =H−1 〈φ′(0), y0〉H1
0
−L2 〈φ(0), y1〉L2

for all (φ0
T , φ

1
T ) ∈ L2 ×H−1 and φ is the solution of (3.3).

Note that R.H.S is the duality product between L2 ×H−1 and H1
0 × L2 denoted by

〈(φ0, φ1), (y0, y1)〉 :=H−1 〈φ1, y0〉H1
0
−L2 〈φ0, y1〉L2

Due to the reversibility, it can also be stated that the system (3.1) is null controllable if

∃u ∈ L2
(
(0, T )× ω

)
such that

(3.4)

∫ T

0

∫
ω

φu = 〈(φ0, φ1), (y0, y1)〉

where φ is the solution of (3.3) with the initial condition φ(0) = φ0, φ′(0) = φ1 instead of

the final condition.

The equation (3.4) is indeed the optimality condition for the minimization of the functional

J : L2 ×H−1 → R defined by

J(φ0, φ1) =
1

2

∫ T

0

∫
ω

|φ|2 + 〈(φ0, φ1), (y0, y1)〉

Suppose (φ̂0, φ̂1) is a minimizer of J , then again from the first principle, it is easy to see

that ∫ T

0

∫
ω

φφ̂ = 〈(φ0, φ1), (y0, y1)〉,

where φ̂ is the solution of (3.3) with the initial conditions φ̂(0) = φ̂0, φ̂′(0) = φ̂1. Comparing

it with (3.4), we see that u = φ̂|ω is a control which drives (y0, y1) to (0, 0) in time T . Thus,

we have a constructive procedure for getting controls.

Hence the problem of controllability reduces to the existence of a minimizer of J . Therefore

the idea is to look for sufficient conditions for the existence of a minimizer. The following

observability gives a sufficient condition for the existence of a minimizer.
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Observability Estimate (inequality): Consider the equation


φ′′ −∆φ = 0 in (0, T )× Ω

φ = 0 on
∑

φ(0) = φ0, φ′(0) = φ1

.(3.5)

Definition: The equation (3.5) is said to be observable in time T if ∃ a constant C > 0

such that

(3.6) ‖ (φ0, φ1) ‖L2×H−1≤ C

∫ T

0

∫
ω

|φ|2 = C ‖ φ ‖2
L2((0,T )×ω)

for all (φ0, φ1) ∈ L2×H−1 and φ is the solution of (3.5). The inequality (3.6 ) indicates that

by observing φ in a subset ω ⊂ Ω for time upto T , one can completely (uniquely) determine

the solution φ of (3.5).

Remark: The observability inequality is a sufficient condition for the controllability. For,

if (3.6) is true, then the functional J is coercive; i.e.

J(φ0, φ1)→∞ as ‖ (φ0, φ1) ‖L2×H−1→∞

Since J is also convex and continuous (continuity follows from the estimate of φ in terms

of the initial values), it follows that J attains a minimum. This is from the standard calculus

of variations.

Theorem: Let K be a closed convex subset on a Hilbert space H and assume that

J : K → R is convex, lower semi-continuous and if K is unbounded, assume further that J

is coercive (that is J(x)→∞ as ‖ x ‖→ ∞). Then J attains a minimum in K.

Remark: The control given by this variational method has a minimal norm in L2((0, T )×
ω) among all other controls if exist. To see this, let ũ be any other control which drives the

system to zero. If u = φ̂|ω is the control given by the above variational method, then taking

the test function φ = φ̂|ω and u = φ̂|ω in the optimality condition, we get

‖ φ̂ ‖2
L2((0,T )×ω)= 〈φ̂1, y0〉1,−1 − 〈φ̂0, y1〉2,2

Again, for any other control ũ, we have

∫ T

0

∫
ω

φ̂ũ = 〈φ̂1, y0〉1,−1 − 〈φ̂0, y1〉2,2

Therefore

‖ φ̂ ‖2
L2((0,T )×ω)=

∫ ∫
ω

φ̂ũ ≤‖ φ̂ ‖ ‖ ũ ‖
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which implies

‖ φ̂ ‖L2((0,T )×ω)≤‖ ũ ‖L2((0,T )×ω)

Remarks: 1. We can also discuss the boundary controllability and derive analogous

results. But due to time constraints, we discuss this problem while introducing Hilbert

Uniqueness Method (HUM).

2. In the previous sections, we have reduced the problem of controllability to that of

an observability inequality which requires for the proof of the existence of a minimizer.

However, in general, the observability inequality need not hold for arbitrary T or ω. One

requires that T is sufficiently large (like the diameter of Ω) and ω has to satisfy (or the part

of the boundary where the controls are acting) certain geometric condition. C. Bardos, G.

Lebean and J. Rauch has proved using micro local analysis that in the class of C∞ domains,

the observability inequality holds if and only if (ω, T ) satisfies certain geometric condition

in Ω: Every ray of geometric optics that propagates in Ω and is reflected on its boundary Γ

enters ω in time less than T . This makes, in general, T should be greater than diameter (Ω).

It is also shown later that geometric condition is sufficient even in the case of C3 domains.

The other method uses multiplier techniques to prove the observability inequality which

provides sufficient conditions. We mention more on these aspects during HUM discussion.

3. However, there is a nice way of proving observability inequality in 1D using Fourier

expansion of solutions and Ingham’s inequality.

4. We did not discuss approximate controllability and we are not planning to discuss in

these lectures. We remark that the weak notion, namely the unique continuation principle

can be used (enough) in this case.

5. Some remarks about the heat equation (parabolic case): The approximate controllabil-

ity is a more suitable notion for the heat equation. This is a due to the smoothing effect of

the heat equation. For Ω\ω 6= φ, ω ⊂,Ω, we know that the solutions are C∞(Ω\ω). Hence

if y1 ∈ R(T, y0), the reachable set, then y(T ) = y1|Ω\ω is C∞. So if we use the notion of

exact controllability as R(T, y0) = L2(Ω), then the exact controllability will not hold for

heat equation as the restrictions of L2(Ω) functions to Ω\ω need not be smooth.

• But, then the other property, namely, infinite speed propagation helps to achieve the

approximate controllability for any time T > 0.

• Even in the case of parabolic equation the variational approach can be employed to

study the controllability problem (approximate, null) to that of an observability inequality

for the adjoint equation.
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However, due to the irreversibility of the heat equation, the observability inequality is

much harder to prove. The multiplier technique do not apply. One of the important method

in this direction is based on Carleman inequalities, which we will not discuss in these lectures.

But there are older methods based on wave or elliptic equations and its exact controlla-

bility. Again, there is a proof in 1D, which is based on moment problems.

4. 1D Wave equation and Ingham’s inequality

Theorem 4.1: Let (λn)n∈Z be a sequence of real numbers and γ > 0 such that

λn+1 − λn ≥ γ > 0,

for all n and T > π/γ. Then ∃C = C(T, γ) > 0 such that for any finite sequence (an), we

have

(4.1)
∑
|an|2 ≤ C

∫ T

−T

∣∣∣∣∑ ane
iλnt

∣∣∣∣2dt
The above inequality is basically, a generalization of classical Parseval’s equality for or-

thogonal sequences.

Remark: Of course the reverse inequality is indeed true and in fact, it holds for any

T > 0. But (4.1) is true if T is sufficiently large.

Remark: Note that γ is the minimal gap between two consecutive elements. The following

theorem asserts that we only requires the asymptotic distance γ∞ = limn→∞ |λn+1−λn|. This

has an effect in the controllability result and provides an optimal T.

Theorem 4.2: Let λn, γ, γ∞ as above and T > π/γ∞ (Note that γ∞ ≥ γ and hence

π/γ∞ ≤ π/γ), then ∃c1, c2 > 0 such that for any finite sequence (an), we have

c1

∑
|an|2 ≤

∫ T

−T

∣∣∣∣∑ ane
iλnt

∣∣∣∣2 ≤ c2

∑
|an|2.

Observability for ID wave equation: Recall the problem


ytt − yxx = uχω in (t, x) ∈ I × I
y(t, 0) = y(t, 1) = 0, t ∈ (0, T )

y(0) = y0, y′(0) = y1

.(4.2)

Here I = (0, 1), ω = (a, b) an interval ⊂ (0, 1) where the controls are distributed. Observ-

ability inequality is
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(4.3) ‖ (φ0, φ1) ‖2
L2×H−1≤ C

∫ T

0

∫ b

a

|φ|2dxdt

where φ is the solution of


φtt − φxx = 0 in I × I
φ(t, 0) = φ(t, 1) = 0, t ∈ (0, T )

φ(0) = φ0, φ′(0) = φ1

.(4.4)

Spectral Decomposition: The above equation can be written as Φ′+AΦ = 0,Φ(0) = Φ0,

where A is the unbounded operator on H = L2(0, 1) × H−1(0, 1) with D(A) = H1
0 (0, 1) ×

L2(0, 1) defined by

AΦ =

(
−z
−∂2

xφ

)
, with Φ =

(
φ

z

)
, z = φ′

That is A =

(
0 −1

−∂2
x 0

)
. The Laplace operator −∂2

x is unbounded operator on H−1 with

domain H1
0 defined as 〈−∂2

xφ, ψ〉 =
∫
φxψx, φ, ψ ∈ H1

0 (0, 1). In fact, A is an isomorphism

from H1
0 × L2 → (H1

0 × L2)′ = L2 ×H−1.

• The eigenvalues and eigenfunctions of A are given by

λn = sgn(n)(nπi), n ∈ Z∗

Φn =

(
1/λn

−1

)
sin(nπx)

Further {Φn} is an orthonormal basis for H1
0 × L2

• Since A is isomorphism, we also get {λnΦn} = {AΦn} is an orthonormal basis for

L2 ×H−1.

• Φ =
∑
anΦn ∈ H1

0 × L2 ⇔
∑
|an|2 <∞ and Φ =

∑
anΦn ∈ L2 ×H−1 ⇔

∑ |an|2
|λn|2 <∞.

Suppose that the initial data (φ0, φ1) has the Fourier expansion

(
φ0

φ1

)
= Φ0 =

∑
anΦn ∈

L2 ×H−1, then the solution Φ =

(
φ

φ′

)
is given by Φ(t) =

∑
ane

λntΦn

Now let us see what to prove to get (4.3), namely the Observability inequality:

L.H.S =‖ (φ0, φ1) ‖L2×H−1=
∑
n∈Z∗
|an|2

1

n2π2
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R.H.S =

∫ T

0

∫ b

a

|φ(t, x)|2 =

∫ b

a

∫ T

0

|
∑

ane
inπt 1

nπ
sinnπx|2

Apply Ingham’s inequality for the sequence {nπ} and
{
an
nπ

sinnπx
}

to get

(Note that (n+ 1)π − nπ = π := γ > 0)

R.H.S ≥
∫ b

a

∑
n∈Z∗

∣∣∣∣ annπ sinnπx

∣∣∣∣2 for T >
2π

γ
= 2

≥
∑
n∈Z∗

|an|2

n2π2

∫ b

a

sin2 nπxdx

(Note,we have T > 2π/γ since the interval is (0, T ) not (−T, T )). Now, if we show that

C = inf
n∈z∗

∫ b

a

sin2 nπx︸ ︷︷ ︸
=Cn

> 0, we get LHS(4.3)≥ C RHS(4.3).

To see this,

Cn =

∫ b

a

sin2 nπx =

∫ b

a

1− cos 2nπx

2

≥ b− a
2
− 1

2|n|π

It follows that ∃n0 such that inf
n≥n0

Cn > 0 since bn > 0,∀n, we get inf
n
Cn > 0. Thus we

have the observability inequality for T > 2.

5. Hilbert Uniqueness Method

We take the case of boundary controllability. Of course, one can also work with interior

controllability. Consider the problem


ytt −∆y = 0 in (0, T )× Ω = Q

y(0) = y0, y′(0) = y1 in Ω

y = u on Σ = (0, T )× Γ

.(5.1)

The control is acting through the boundary Γ (or it can also be through a part of the

boundary Γ0) over the time 0 to T. We are looking for a control u so that the solution y

satisfies y(T ) = y′(T ) = 0. That is, we are looking for null controllability.
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Motivation of the approach: Let Uad be the set of all exact controls. That is Uad =

{u ∈ L2(Σ) : y satisfies (5.1) and y(T ) = y′(T ) = 0} The question is whether Uad non-

empty or not? If Uad is non-empty, indeed, we would like to pick up the best control according

to certain criteria. Let us begin by assuming that Uad 6= φ, that is there is a control and

consider the problem of minimizing:

(5.2) J(u) = inf
v∈Uad

J(v), where J(v) =
1

2

∫
Σ

v2

We look for the optimality system via the method of penalization (other method is duality).

Let ε > 0 and consider the problem

(5.3) inf Jε(v, z), where Jε(v, z) =
1

2

∫
Σ

v2 +
1

2ε

∫
Q

|z′′ −∆z|2

where z satisfies


z′′ −∆ z ∈ L2(Q)

z = v on Σ

z(0) = y0, y′(0) = z1, z(T ) = z′(T ) = 0

.(5.4)

Note that, we are not demanding z satisfies PDE and there will be many z satisfying (5.4).

Penalized problem will have a unique solution for each ε > 0.

• Prove estimates on the solution independent of ε

• Pass to the limit

• At the limit, we may have a solution to (5.2)

Conclusion: If ∃ one control, then ∃ a control with minimal L2-norm. This allows us

to define a map (y0, y1) → v = v(y0, y1) (control with minimal norm) which has stability

properties and is continuous.

Remark: Of course this does not say, how to get the control. At this stage we write

down the optimality system (observability) for (5.3) and then pass to the limit as ε → 0.

The Hilbert uniqueness method (HUM) is based on these ideas.

Optimality system for (5.3): Assume (uε, yε) be a solution of (5.3), i.e, Jε(u
ε, yε) =

inf Jε(v, z). Then, one can see that
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
yεtt −∆yε ∈ L2(Q)

yε = uε on Σ

yε(0) = y0, yε
′
(0) = y1, yε(T ) = 0 = yε

′
(T )

.(5.5)

and we have the optimality system for the co-state pε as

{
p′′ε −∆pε = 0 in Q

pε = 0 on Σ, ∂pε
∂ν

= uε on Σ
.(5.6)

Further, one can check that pε = −1
ε
(yε
′′−∆yε). Moreover, The limit equation is given by

y′′ −∆y = 0 in Q

y = u on Σ

y(T ) = y′(T ) = 0

y(0) = y0, y′(0) = y1

.

and


p′′ −∆p = 0

p = 0 on Σ
∂p
∂ν

= u on Σ

.

This motivates to look for a control of the form u = ∂p
∂ν

and p satisfies the equation

p′′ −∆p = 0 in Q, p = 0 on Σ. But what would be the initial condition?

Hilbert Uniqueness method: Thus, we start with arbitrary initial values {φ0, φ1} and

solve the problem


φ′′ −∆φ = 0 in Q

φ = 0 on Σ

φ(0) = φ0, φ′(0) = φ1

.(5.7)

and then solve for ψ as:

(5.7)2


ψ′′ −∆ψ = 0 in Q

ψ(T ) = ψ′(T ) = 0

ψ = ∂φ
∂ν
on Σ

.
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Define a map ∧ : (φ0, φ1) 7→ (ψ(0), ψ′(0)). We wish to find (φ0, φ1) such that ψ(0) =

y0, ψ′(0) = y1 so that the exact controllability is achieved and then the control is given by ∂φ
∂ν

with the solution y = ψ. Enough to prove ∧ is onto. We need appropriate spaces to define

the solutions φ and ψ.

Remarks: Solution φ has finite energy, i.e.

E(t) =
1

2

∫ T

0

(
|φ′|2 +

1

2
|∇φ(x, t)|2

)
dx <∞

That is φ ∈ L∞(0, T ;H1
0 (Ω)), φ′ ∈ L∞(0, T ;L2(Ω)). Moreover, energy is conserved, i.e. for

all t,

E(t) = E(0) =
1

2

(∫ T

0

|φ′|2 +

∫ T

0

|∇φ0|2
)
.

Initial difficulties: Let us mention two of the fundamental difficulties in the well-

definedness of the above method before coming to the ontoness of ∧.

i) For a.e. t, φ(t, ·) ∈ H1(Ω) and hence ∇φ(t, ·) ∈ L2(Ω). Thus, in general ∂φ
∂ν

∣∣
Σ

= ∇φ ·ν
∣∣
Σ

is not a well defined quantity as of now. In general, we may require φ(t, ·) ∈ H2(Ω) to define
∂φ
∂ν

∣∣
Σ

, which in general is not true. However, this difficulty is overcome by establishing, what

is known as a hidden regularity for ∂φ
∂ν

∣∣
Σ

. In fact, ∂φ
∂ν
∈ L2(Σ).

Theorem: For the finite energy solution φ of problem (5.7), the quantity ∂νφ|Σ = ∂φ
∂ν

∣∣
Σ

is in L2(Σ) and satisfies, for any T > 0:

(5.8) ‖ ∂νφ ‖2
L2(Σ)≤ CT

(
‖ φ0 ‖2

H1(Ω) + ‖ φ1 ‖2
L2(Ω)

)

The proof is technical and long. It is based on the multiplier method with suitable multi-

pliers. More precisely, the Rellich-Pohozev multipliers of the form qk(x) ∂φ
∂xk

are used, where

q = (q1 · · · qn) is a smooth vector field and finally, choose q such that q = ν on Σ.

ii) The second problem is the interpretation of the solution ψ with the weak Dirichlet data

ψ = ∂φ
∂ν

which is only in L2(Σ) by the previous theorem. The solution has to be interpreted

with a weak L2 boundary data. This is done using the method of transposition (duality,

adjoint).

Given f ∈ L1(0, T ;L2(Ω)), θ0 ∈ H1
0 (Ω) and θ1 ∈ L2(Ω), define the finite energy solution

θ ∈ C
(
[0, T ];H1

0 (Ω)
)
∩ C1

(
[0, T ];L2(Ω)

)
of the system
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
θtt −∆θ = f in Q

θ = 0 on Σ

θ(0) = θ0, θ′(0) = θ1

.(5.9)

Multiplying (5.7)2 by θ and (5.9) by ψ (assuming there is a smooth solution ψ) and

integrating by parts, we get

(5.10)

∫
Q

fψ + 〈θ0, ψ′(0)〉+ 〈θ1, ψ(0)〉 = −
∫
∂νθ · ∂νφ

Indeed the last term is well defined due to hidden regularity.

Definition(Transposition solution): We say ψ ∈ C([0, T ];L2(Ω))∩C1
(
[0, T ];H−1(Ω)

)
is a transposition solution of (5.7)2 if (5.10 ) holds for all f ∈ L1(0, T ;L2(Ω)) and for all

(θ0, θ1) ∈ H1
0 (Ω)× L2(Ω).

Remark: The unique existence can be proved using Riesz-representation theorem. Fur-

ther ψ satisfies the continuity estimate:

‖ ψ ‖L∞(0,T ;L2(Ω)) + ‖ ψ′ ‖L∞(0,T ;H−1(Ω))≤ C

(
‖ φ0 ‖H1

0
+ ‖ φ1 ‖L2

)
Thus, we have (ψ(0), ψ′(0)) ∈ L2(Ω)×H−1(Ω). Now, define

∧ : H1
0 (Ω)× L2(Ω)→ L2(Ω)×H−1(Ω)

by ∧
(
φ0, φ1

)
=
(
ψ(0),−ψ′(0)

)
. We easily get 〈∧

(
φ0, φ1

)
, (φ0, φ1)〉 =‖ ∂φ

∂ν
‖2
L2(Σ)

We have the continuity of ∧ by the estimate (5.8). To prove ∧ is onto or an isomorphism,

we need a reverse inequality of (5.8 ). In other words, we need to have

(5.11) ‖ (φ0, φ1) ‖2
H1

0×L2≤ C

∫
Σ

|∂νφ|2

This is nothing but the observability inequality with the observation ∂νφ at the boundary.

Conclusion: If (5.11 ) holds, then the controllability problem is solved. For, given

(y0, y1) ∈ L2(Ω)×H−1(Ω), let (φ̂0, φ̂1) ∈ H1
0 (Ω)× L2(Ω) solves ∧(φ̂0, φ̂1) = (y0,−y1)

Now let φ̂ solves (5.7) with φ̂(0) = φ̂0, φ̂1(0) = φ̂1 and solve (5.7)2 for ψ̂ with ψ̂ = ∂φ̂
∂ν

on

Σ. Then by definition ∧(φ0, φ1) = (ψ̂(0),−ψ̂′(0)) and thus ψ̂(0) = y0, ψ̂′(0) = y1. Hence the

controllability problem (5.1) is solved with y = ψ̂ with control u = ∂ψ̂
∂ν

.

Remarks

1. The method is constructive
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2. If there is one control, then there will be many controls driving the system to rest at

time T . But the control given by HUM is the best control in the sense that it is the minimal

L2 control.

Let us come back to the observability estimate. As remarked earlier, it will hold only if T

is sufficient large. This is due to the finite speed of propagation. The control acting on the

boundary ∂Ω cannot transfer the information immediately to the interior of the domain. It

takes time something in the order of the diameter of Ω

Again the method of multipliers can be used to prove the following result.

Observability Inequality: Let Ω be of class C2. Then ∃T 0 > 0 such that for T > T0,

the weak solution φ of (5.7) satisfies

(T − T0) ‖ (φ0, φ1) ‖2
H1

0×L2≤ C

∫
∑
∣∣∂φ
∂ν

∣∣2

Theorem: ∃T0 > 0 such that for T > T0, the problem (5.1) is exactly controllable in time

T > T0.

Remarks and comments: One can get good estimates on the controllable time T0. Also

one need not have to apply control on the entire boundary Γ. But, at the same time, it is

not possible to achieve controllability by taking arbitrary part of Γ due to the geometric

condition on Γ.

A sufficient condition on the control part of Γ: Let x0 ∈ Rn be any fixed point and

define m(x) = x− x0. Define

Γ0 : = {x ∈ Γ : m(x) · ν(x) ≥ 0},Γ1 = Γ\Γ0

Σ0 : = (0, T )× Γ0,Σ1 = (0, T )× Γ1

R0 : = R(x0) = max
x∈Ω̄
{m(x)}, T0 = 2R(x0)

Example: If Ω is a ball of radius R, x0 is the center, then Γ0 = Γ, R0 = R, T0 = 2R. On

the other hand, if x0 is outside the ball Ω, draw the tangents to the circle. Then Γ0 is the

arc that lies opposite to the point x0.

One can prove the following observability estimate using the same multiplier technique.

Theorem: Let T0 and Γ0 be as above. Then, for T > T0, the weak solution φ of (5.7)

satisfies

(T − T0) ‖ (φ0, φ1) ‖2
H1

0×L2≤ C

∫
Σ0

∣∣∣∣∂φ∂ν
∣∣∣∣2
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Remarks 1. The above result gives us the option of acting control on certain parts of the

boundary which clearly depends on the choice of x0.

2. The minimum time required for controllability is greater than T0 = 2R0 = 2R(x0).

Hence T0 increases as R0 increases. So our preference would be to choose the least R0 which

is the radius of the smallest circle containing Ω with center x0. Thus the good choices of x0

seems to be from Ω. For example, if Ω is a ball, then the best choice of x0 is the center and

hence T0 = 2R =diameter(Ω).

There is a flip side to the story. Let us understand when Ω is a ball and x0 is outside Ω.

Indeed T > dia(Ω) and hence we need a larger time. Then the advantage is that, we need

not have to act on the entire boundary. If we think x0 as an observer, then the control acts

on that part of the boundary which the observer cannot see. As the point (observer) moves

further away, one needs more and more time to achieve controllability but requires to apply

the control on a shorter boundary, but always more than half of the boundary in the case of

the circle (geometric condition).

Generalization: The HUM introduced is very general and can apply to many more

systems. It can also apply to same system with different controllability spaces and different

boundary condition. We sketch some of these aspects.

In the earlier situation, we had obtained the controllability in the space L2(Ω)×H−1(Ω)

with controls in L2(Σ0). In other words, the trajectories are moving in the space L2(Ω) ×
H−1(Ω).
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Now consider, G as any Hilbert space of functions defined on Σ0. Let FG be the completion

of the space D(Ω)×D(Ω) with respect to the norm defined as ‖ (φ0, φ1) ‖FG :=‖ ∂φ
∂ν
‖G.

Recall that in the earlier situation, we have actually proved that ‖ ∂φ
∂ν
‖L2(Σ0) is an

equivalent norm to ‖ (φ0, φ1) ‖H1
0 (Ω)×L2(Ω). That is G = L2(Σ0) and we established that

FG = H1
0 (Ω)× L2(Ω) with the controllable space L2(Ω)×H−1(Ω) = F ′G.

Introduce ψ as the solution



ψ′′ −∆ψ = 0 in Q

ψ(T ) = ψ′(T ) = 0

ψ =

IG
(
∂φ
∂ν

)
on Σ0

0 on Σ\Σ0,

.

where IG : G→ G′ is the canonical isomorphism. It is easy to see that

〈∧(φ0, φ1), (φ0, φ1)〉 =‖ ∂φ
∂ν
‖2
G

Consequently ∧ : FG → F ′G is an onto isomorphism. Thus, for all (y0,−y1) ∈ F ′G, there

exists a control v ∈ G′ such that y = ψ satisfies y(T ) = y′(T ) = 0. Thus, we have the

controllability in the space F ′G with controls in G′.

Thus the crucial problem is the identification of FG and F ′G which is not an easy task.

Example: Take ‖ (φ0, φ1) ‖F1 :=
( ∫∑

0

∣∣∂φ
∂ν

∣∣p)1/p
, p > 1, p = 2

In general, the characterization of F1 is not known.

Now suppose H is a linear operator defined on the function space of Σ0. Further, suppose

that the unique continuation principle holds: That is

H
(∂φ
∂ν

)
= 0 on Σ0 ⇒ φ = 0 in Q.

In this case, ‖ (φ0, φ1) ‖F=‖ H(∂φ
∂ν

) ‖G defines a norm on F and we have the controllability

on the space F ′ by HUM.

Example: Let H = ∂
∂t
, G = L2(Σ0), ‖ (φ0, φ1) ‖F :=‖ ∂φ′

∂ν
‖L2(Σ0)

In this case, we can identify F, F ′ as F =
(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω) and F ′ = H−1(Ω)×
(H2(Ω)∩H1

0 (Ω))′ with the control space (H1(0, T );L2(Γ0))′. Observe that the controllability

is, indeed, achieved in a larger space than L2(Ω)×H−1(Ω), but the controls are in a weaker

space (H1(0, T );L2(Γ0))′ than L2(Σ0). We skip the details.

Remark: We can also achieve controllability in a smaller space, namely H1
0 (Ω) × L2(Ω)

with better (smooth) controls, v such that v, ∂v
∂t
∈ L2(Σ0). In fact, v ∈ H1

0 (0, T ;L2(Γ0)).
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This is quite easy, it is enough to work with the space F = L2(Ω) ×H−1(Ω) for the initial

values (φ0, φ1) instead of H1
0 (Ω)×L2(Ω) as done previously. Then, we get the controllability

in the space F ′ = H1
0 (Ω) × L2(Ω). Since φ1 ∈ L2(Ω), let χ ∈ H1

0 (Ω) be the solution of

∆χ = φ1 and define ω(t) =
∫ t

0
φ(s)ds+ χ which satisfies


w′′ −∆w = 0 in Q

w(0) = χ,w′(0) = φ0

w = 0 on Σ

.

By the hidden regularity, we see that ∂w
∂ν
∈ L2(Σ0). Since φ = w′, we get ∂φ

∂ν
= ∂

∂t
∂w
∂ν
∈

H−1
(
0, T ;L2(Γ0)

)
Thus the mapping (φ0, φ1) → ∂φ

∂ν
is linear continuous from L2(Ω) × H−1(Ω) to

H−1(0, T ;L2(Γ0)). Hence by taking G = H−1(0, T ;L2(Γ0)), we get the control in the space

G′ = H1
0 (0, T ;L2(Σ0)).

Final Remark: The HUM can be applied to many other situations; controllability with

Neumann condition, more general elliptic operators, 4th order equations like Petrowski sys-

tem etc.

6. Optimal Control

In the previous section, we have remarked that the control given by HUM minimizes the

L2 norm. We prove this fact in this section. Let

(6.1) Uad := {v ∈ L(Σ0) : y(T, v) = y′(T, v) = 0, y is given by (5.1)}

That is Uad is the set of all controls which steers the system to the origin. Note that Uad
is non-empty by the controllability results in the previous section. We are interested in

minimizing the functional

J(v) :=
1

2

∫
Σ0

|v|2,

subject to v ∈ Uad. The main theorem is given below.

Theorem: Let {y0, y1} ∈  L2(Ω) ×H−1(Ω) be the given initial values and let u = ∂φ
∂ν

on

Σ0 is the control obtained by HUM. Then

(6.2) J(u) = min
v∈Uad

J(v).

PROOF: We use the penalization method to prove the theorem (see [5]). Given ε > 0,

introduce the functional

(6.3) Jε(v, z) =
1

2

∫
Σ0

|v|2 +
1

2ε

∫
Q

|z′′ −∆z|2,
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where v ∈ L2(Σ0) and z is any solution of

(6.4)


Lz ∈ L2(Q),

z(0) = y0, z′(0) = y1, z(T ) = z′(T ) = 0 in Ω,

z =

{
v on Σ0,

0 on Σ1.

In particular, if we choose v ∈ Uad, then z = y and Jε(v, z) = J(v). We now consider the

optimal control problem

(6.5) inf{Jε(v, z) : {v, z} as in (6.4)}

For fixed ε > 0, ( 6.5 ) is a standard optimization problem and it has a unique solution

{uε, zε} such that

(6.6) Jε(uε, zε) = inf Jε(v, z).

Claim: The solution {uε, zε} is bounded in L2(Σ0)×(L∞(0, T ;L2(Ω))∩W 1,∞(0, T ;H−1(Ω))).

If v ∈ Uad and y = y(., v) is the corresponding solution of (5.1), then {v, y} is a candidate

for the minimization of ( 6.6 ) and hence

Jε(uε, zε) ≤ Jε(v, y(., v)) = J(v).

Thus

(6.7) Jε(uε, zε) ≤ min
v∈Uad

J(v).

Hence {uε} is bounded in L2(Σ0). Moreover, if we put fε = 1√
ε
(z′′ε − ∆zε), then {fε} is

bounded in L2(Q) and hence

(6.8) ‖Lzε‖ = ‖z′′ε −∆zε‖ ≤ C
√
ε.

From ( 6.4 ), ( 6.8 ) and from the estimates of the wave equation, it follows that {zε} is

bounded in L∞(0, T ;L2(Ω)) ∩W 1,∞(0, T ;H−1(Ω)). Hence the claim.

From the claim, it follows that

uε → v̂ in L2(Σ0) weak and zε → ŷ in L2(Q) weak.

Further, (v̂, ŷ) satisfies the system (5.1) by passing to the limit in ( 6.4 ), thanks to the

estimate ( 6.8 ). Further, we have ŷ(T ) = ŷ′(T ) = 0 and therefore v̂ ∈ Uad. Now using the

lower semi continuity and ( 6.7 ), we get
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min
v∈Uad

J(v) ≤ J(v̂) ≤ limJ(uε) ≤ limJε(uε, zε) ≤ min
v∈Uad

J(v).

Thus

(6.9) J(v̂) = lim J(uε) = min
v∈Uad

J(v),

which implies that v̂ is an optimal control and

(6.10) uε → v̂ in L2(Σ0) strong.

Claim: v̂ = ∂φ
∂ν

.

Let pε = 1
ε
(z′′ε − δzε) = 1√

ε
fε, then we get the Euler equation of minimization of ( 6.6 ) as

(6.11)

∫
Q

pε.Lζ =

∫
Σ0

uεv, ∀v ∈ L2(Σ0),

where, for given v ∈ L2(Σ0), ζ is the solution of


Lζ ∈ L2(Q),

ζ(0) = ζ ′(0) = ζ(T ) = ζ ′(T ) = 0 in Ω,

ζ =

{
v on Σ0,

0 on Σ1.

From ( 6.11 ), it follows that (integrating by parts)∫
Σ0

uεv =

∫
Q

Lpε.ζ −
∫

Σ

pε
∂ζ

∂ν
+

∫
Σ0

∂pε
∂ν

v,

which is equivalent to {
Lpε = 0 in Q,

pε = 0 in Σ, ∂pε
∂ν

= uε on Σ0.

Again, by the estimates of wave equation, we get

(T − T 0)(|∇pε(0)|2 + |p′ε(0)|2) ≤ 1

2
T 0

∫
Σ0

|uε|2 ≤ C, ∀ε > 0.

Thus the solution pε is bounded in L∞(0, T ;H1
0 (Ω)) ∩W 1,∞(0, T ;L2(Ω)), so that


pε → p in L∞(0, T ;H1

0 (Ω)) weak?,

p′ε → p′ in L∞(0, T ; l2) weak?,

{pε(0), p′ε(0)} → {p(0), p′(0)} in H1
0 (Ω)× L2(Ω) weak.
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Further p satisfies {
Lp = 0 in Q,

p = 0 in Σ, ∂p
∂ν

= v̂ on Σ0.

It follows from our observation that (v̂, ŷ) satisfies (5.1) and from ( 6.12 ) that

Λ{p(0), p′(0)} = {y1,−y0}. However, we already have, Λ{φ0, φ1} = {y1,−y0}. Since Λ is

an isomorphism, we must have p(0) = φ0 and p′(0) = φ1. Therefore by uniqueness of wave

equation, p = φ and hence we get v̂ = ∂p
∂ν

= ∂φ
∂ν

on Σ0. This completes the proof. �
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