Linear Evolution Equations: Linear Parabolic PDE

AMIYA K PANI

INDUSTRIAL MATHEMATICS GROUP

DEPARTMENT OF MATHEMATICS
akp@math.iitb.ac.in

1 Introduction

In these lectures, we discuss the existence and uniqueness of weak solution to the following class of second order linear parabolic differential equations:

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\mathcal{A}(t) u=f \tag{1.1}
\end{equation*}
$$

and initial condition:

$$
u(0)=u_{0},
$$

where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega$, and $T>0$ fixed. Further $f: \Omega \times(0, T] \rightarrow \mathbb{R}$ and $u_{0}: \Omega \rightarrow \mathbb{R}$ are given functions in their respective domains of definition. Here $u=u(x, t)$ defined on $\Omega \times(0, T]$ is unknown and $\mathcal{A}(t)$ is an elliptic differential operator. Note that we, at this stage, do not spell out the form of \mathcal{A} and also the boundary condition.

Since we are dealing with functions in space-time domain, therefore, in the beginning, we discuss Banach space valued distributions and function spaces. Then, we define weak formulation and establish abstract theory for solvability of the weak formulation.

2 Banach Space Valued Distributions and Function Spaces

Since the problem (1.1) is defined on a space-time domain, we shall study some function spaces defined on space-time domain.

Let X be a Banach space with $\|\cdot\|_{X}$. We now denote X-valued L^{p} spaces by $L^{p}(0, T ; X)$, which consists of all strongly measurable functions $v:(0, T] \rightarrow X$ such that

$$
\|v\|_{L^{p}(0, T ; X)}:=\left(\int_{0}^{T}\|v(t)\|_{X}^{p} d t\right)^{\frac{1}{p}}<\infty, \quad 1 \leq p<\infty
$$

and for $p=\infty$

$$
\|v\|_{L^{p}(0, T ; X)}:=\operatorname{essup}_{0 \leq t \leq T}\|v(t)\|_{X}<\infty .
$$

The space $C([0, T] ; X)$ consists of all continuous $v:[0, T] \rightarrow X$ such that

$$
\|v\|_{C([0, T] ; X)}:=\max _{0 \leq t \leq T}\|v(t)\|_{X}<\infty
$$

Definition 2.1 Weak Derivative: For $u \in L^{1}(0, T ; X), v \in L^{1}(0, T ; X)$ is called its weak derivative, that is, $u_{t}=v$ if

$$
\int_{0}^{T} \phi_{t}(t) u(t) d t=-\int_{0}^{T} \phi(t) v(t) d t
$$

for all scalar test functions $\phi \in \mathcal{D}(0, T)$. Here, $\mathcal{D}(0, T)$ is test space defined on $(0, T)$, that is, it is the space of infinitely differentiable functions with compact support in $(0, T)$.

Definition 2.2 (Space-time Sobolev Space): The space $W^{1, p}(0, T ; X)$ is defined as

$$
W^{1, p}(0, T ; X):=\left\{u \in L^{p}(0, T ; X): u_{t} \text { exits and } u_{t} \in L^{p}(0, T ; X)\right\} .
$$

On $W^{1, p}(0, T ; X)$, define its norm as

$$
\|u\|_{W^{1, p}(0, T ; X)}:=\left(\int_{0}^{T}\left(\|u(t)\|_{X}^{p}+\left\|u_{t}(t)\right\|_{X}^{p}\right) d t\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty
$$

and for $p=\infty$

$$
\|v\|_{W^{1, \infty}(0, T ; X)}:=\operatorname{essup}_{0 \leq t \leq T}\left(\|u(t)\|_{X}+\left\|u_{t}(t)\right\|_{X}\right) .
$$

Hence forward for $p=2$, we write

$$
H^{1}(0, T ; X):=W^{1,2}(0, T ; X)
$$

Below, we state without proof two theorems on calculus in an abstract space. For a proof, we refer to pp. 286-288 of Evans [1]

Theorem 2.1 Let $u \in W^{1, p}(0, T ; X), 1 \leq p \leq \infty$. Then the followings hold:
(i) $u \in C([0, T] ; X)$ after eventual modification on a set of measure zero.
(ii) $u(t)=u(s)+\int_{s}^{t} u^{\prime}(\tau) d \tau \quad 0 \leq s \leq t \leq T$.
(iii) Further,

$$
\max _{t \in[0, T]}\|u(t)\|_{X} \leq C\|u\|_{W^{1, p}(0, T ; X)}
$$

where C depends on T.

Note in Theorem 2.1, u and $u^{\prime} \in L^{p}(0, T ; X)$. Now what can be said if u and u^{\prime} belong to different spaces and the answer to this question can be founf from the results of the following Theorem.

Theorem 2.2 Let $u \in L^{p}(0, T ; V)$ and $u_{t} \in L^{p}\left(0, T ; V^{\prime}\right)$ where V^{\prime} is the dual space of V with $V \hookrightarrow H=H^{\prime} \subset V^{\prime}$. Then, followings hold:
(i) $u \in C([0, T] ; H)$ after possible modification on a set of measure zero.
(ii) The mapping $t \rightarrow\|u(t)\|_{H}$ is absolutely continuous with

$$
\frac{d}{d t}\|u(t)\|_{H}^{2}=2\left\langle u_{t}(t), u(t)\right\rangle \text { for a.e. } t \in[0, T] .
$$

(iii) Moreover, there is a positive constant $C=C(T)$ such that

$$
\max _{t \in[0, T]}\|u(t)\|_{H} \leq C\left(\|u(t)\|_{L^{2}(0, T ; V)}+\left\|u_{t}(t)\right\|_{L^{2}\left(0, T ; V^{\prime}\right)}\right) .
$$

3 Abstract Formulation and Wellposedness

Given two separable Hilbert spaces H and V with dual H^{\prime} of H identified as H, consider the Gelfand triplet

$$
\begin{equation*}
V \hookrightarrow H=H^{\prime} \hookrightarrow V^{\prime} \tag{3.2}
\end{equation*}
$$

where \hookrightarrow is continuous and dense embedding and V^{\prime} is the dual of V. We now denote by (\cdot, \cdot) an inner product in H and $\langle\cdot, \cdot\rangle$ duality parring between V^{\prime} and V. Note that the following relation holds for $v \in H$ and $w \in V^{\prime}$

$$
\langle v, w\rangle=(v, w)
$$

Below, we make the following assumptions:
(A1) $\mathcal{A}(t) \in \mathcal{L}\left(V, V^{\prime}\right)$ depends continuously on $t \in[0, T]$

Now associate with $\mathcal{A}(t)$, a bilinear form on V given by

$$
v, w \mapsto a(t ; v, w) \text { for each } t \in[0, T]
$$

which satisfies

$$
\begin{equation*}
a(t ; v, w)=\langle\mathcal{A}(t) v, w\rangle \tag{3.3}
\end{equation*}
$$

Further assume that the bilinear form satisfies the following Garding type inequality:
(A2) For $v \in V$ there exist real constants $\alpha>0$ and β such that

$$
\langle\mathcal{A}(t) v, w\rangle=a(t ; v, w) \geq \alpha\|v\|_{V}^{2}-\beta\|w\|_{H}^{2}
$$

Now consider the following abstract evolution problem: For a given $f \in L^{2}\left(0, T ; V^{\prime}\right)$ and $u_{0} \in H$ find $u \in L^{2}(0, T ; V)$ with $u_{t} \in L^{2}\left(0, T ; V^{\prime}\right)$ satisfying

$$
\begin{equation*}
\frac{d u}{d t}+\mathcal{A}(t) u=f(t) \quad \text { in } V^{\prime}, \text { for a.e } t \in[0, T] \tag{3.4}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
u(0)=u_{0} \tag{3.5}
\end{equation*}
$$

Below, we establish the main theorem on solvability of the problem (3.4)-(3.5).

Theorem 3.1 Let H, V and $\mathcal{A}(t)$ be as given above. Further, let assumptions (A1)-(A2) hold. Then for a given $f \in L^{2}\left(0, T ; V^{\prime}\right)$ and $u_{0} \in H$, the problem (3.4)-(3.5) has a unique solution $u \in L^{2}(0, T ; V)$ with $u_{t} \in L^{2}\left(0, T ; V^{\prime}\right)$.

Proof: We shall first prove uniqueness. Assume that the solution is not unique, that is, u_{1} and u_{2} are two distinct solutions of (3.4)-(3.5) with $u_{1} \neq u_{2}$. Note, u_{i} satisfies

$$
\begin{equation*}
\frac{d u_{i}}{d t}+\mathcal{A}(t) u_{i}=f \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
u_{i}(0)=u_{0} . \tag{3.7}
\end{equation*}
$$

With $w=u_{1}-u_{2}$, now u satisfies

$$
\begin{equation*}
\frac{d w}{d t}+\mathcal{A}(t) w=0 \tag{3.8}
\end{equation*}
$$

with

$$
\begin{equation*}
w(0)=0 . \tag{3.9}
\end{equation*}
$$

Taking duality between w and (3.8), we arrive at

$$
\left\langle\frac{d w}{d t}, w\right\rangle+\langle\mathcal{A}(t) w, w\rangle=0
$$

Using (3.3) and (ii) of Theorem 2.2, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|w(t)\|_{H}^{2}+a(t ; w, w)=0 \tag{3.10}
\end{equation*}
$$

Applying Garding type inequality for the bilinear form $a(t ; w, w)$ and find that (3.10) becomes

$$
\begin{equation*}
\frac{d}{d t}\|w(t)\|_{H}^{2}+2 \alpha\|w(t)\|_{V}^{2}-2 \beta\|w(t)\|_{H}^{2} \leq 0 \tag{3.11}
\end{equation*}
$$

Using integrating factor $e^{-2 \beta t}$, we rewrite (3.11) as

$$
\begin{equation*}
\frac{d}{d t}\left(e^{-2 \beta t}\|w(t)\|_{H}^{2}\right)+2 \alpha e^{-2 \beta t}\|w(t)\|_{V}^{2} \leq 0 \tag{3.12}
\end{equation*}
$$

and hence, integrating with respect to t from 0 to t^{*}, we obtain

$$
e^{-2 \beta t^{*}}\left\|w\left(t^{*}\right)\right\|_{H}^{2}+2 \alpha \int_{0}^{t^{*}} e^{-2 \beta s}\|w(s)\|_{V}^{2} d s \leq 0
$$

Therefore, $w=0$, that is, $u_{1}=u_{2}$ and it leads to a contradiction. Hence, the solution of (3.4)-(3.5) is unique.

For existence, we use Bubnov-Galerkin method. Assume that $\{\phi\}_{j=1}^{\infty}$ forms a basis of V in the sense that for every $m ;\left\{\phi_{1}, \phi_{2}, \cdots, \phi_{m}\right\}$ are linearly independent and the linear combinations $\sum_{j=1}^{m} \xi_{j} \phi_{j}, \xi_{j} \in \mathbb{R}$ are dense in V.

For a fixed m, let $V_{m}=\operatorname{span}\left\{\phi_{1}, \phi_{2}, \cdots, \phi_{m}\right\}$ and let P_{m} be the orthogonal projection from H onto V_{m}. We now seek a function $u_{m}:[0, T] \rightarrow V_{m}$ of the form

$$
\begin{equation*}
u_{m}(t):=\sum_{j=1}^{m} g_{j m}(t) \phi_{j}, \tag{3.13}
\end{equation*}
$$

where $g_{j m}$'s are chosen so that

$$
\begin{equation*}
\left(\frac{d}{d t} u_{m}(t), \phi_{k}\right)+a\left(t ; u_{m}(t), \phi_{k}\right)=\left\langle f(t), \phi_{k}\right\rangle, \quad 1 \leq k \leq m \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{m}(0)=P_{m} u_{0}:=\sum_{j=1}^{m} \xi_{j m} \phi_{j} . \tag{3.15}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{m} u_{0}:=\sum_{j=1}^{m} \xi_{j m} \phi_{j} \rightarrow u_{0} \text { in } H \text { as } m \rightarrow \infty \tag{3.16}
\end{equation*}
$$

The system (3.14)-(3.15) leads to a system of linear ODE and hence, by Picard's theorem there exists a unique solution to (3.14)-(3.15). Now, it remains to show that $\lim _{m \rightarrow \infty} u_{m}(t)=u(t)$ and the limiting function u is a solution of (3.4)-(3.5).

Multiply (3.14) by $g_{k m}(t)$ and summing over k, we arrive at

$$
\left(\frac{d}{d t} u_{m}(t), u_{m}(t)\right)+a\left(t ; u_{m}(t), u_{m}(t)\right)=\left(f(t), u_{m}(t)\right)
$$

and hence,

$$
\begin{equation*}
\left.\left.\frac{1}{2} \frac{d}{d t}\left\|u_{m}(t)\right\|_{H}^{2}+a\left(t ; u_{m}(t), u_{m}(t)\right)=\right\rangle f(t), u_{m}(t)\right\rangle . \tag{3.17}
\end{equation*}
$$

For $\left\langle f(t), u_{m}(t)\right\rangle$, use Cauchy-Schwartz to arrive at

$$
\begin{equation*}
\left\langle f(t), u_{m}(t)\right\rangle \leq\|f(t)\|_{V^{\prime}}\left\|u_{m}(t)\right\|_{V} \tag{3.18}
\end{equation*}
$$

Use Young's inequality $a b \leq \frac{1}{2 \epsilon} a^{2}+\frac{\epsilon}{2} b^{2} \quad a, b \geq 0, \epsilon>0$ to (3.18) to find that

$$
\begin{equation*}
\left\langle f(t), u_{m}(t)\right\rangle \leq \frac{1}{2 \epsilon}\|f(t)\|_{V^{\prime}}^{2}+\frac{\epsilon}{2}\left\|u_{m}(t)\right\|_{V}^{2} \tag{3.19}
\end{equation*}
$$

On substituting (3.19) in (3.17) and for the bilinear form $a(t ; \cdot, \cdot)$, use Garding type inequality with $\epsilon=\alpha$, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left\|u_{m}(t)\right\|_{H}^{2}+\alpha\left\|u_{m}(t)\right\|_{H}^{2} \leq \frac{1}{\alpha}\|f(t)\|_{V^{\prime}}^{2}+2 \beta\left\|u_{m}(t)\right\|_{H}^{2} \tag{3.20}
\end{equation*}
$$

Setting $y(t)=\left\|u_{m}(t)\right\|_{H}^{2}$ and $z(t)=\|f(t)\|_{V^{\prime}}^{2}$, we rewrite (3.20) as

$$
\begin{equation*}
\frac{d}{d t} y(t) \leq \frac{1}{\alpha} z(t)+2 \beta y(t) . \tag{3.21}
\end{equation*}
$$

Apply Gronwall's inequality to obtain

$$
\begin{equation*}
y(t) \leq e^{2 \beta t}\left(y(0)+\frac{1}{\alpha} \int_{0}^{t} z(s) d s\right) . \tag{3.22}
\end{equation*}
$$

Note that

$$
y(0)=\left\|u_{m}(0)\right\|_{H}^{2} \leq C\left\|u_{0}\right\|^{2} .
$$

Thus, we arrive at

$$
\left\|u_{m}(t)\right\|_{H}^{2} \leq C\left(\left\|u_{0}\right\|^{2}+\int_{0}^{t}\|f(s)\|_{V^{\prime}}^{2} d s\right)
$$

Taking maximum in time from 0 to T, we find that

$$
\max _{0 \leq t \leq T}\left\|u_{m}(t)\right\|_{H}^{2} \leq C\left(\left\|u_{0}\right\|^{2}+\int_{0}^{T}\|f(s)\|_{V^{\prime}}^{2} d s\right)
$$

and hence,

$$
\begin{equation*}
\left\|u_{m}\right\|_{L^{\infty}(0, T ; H)}^{2} \leq C\left(\left\|u_{0}\right\|^{2}+\|f\|_{L^{2}\left(0, T ; V^{\prime}\right)}^{2}\right) . \tag{3.23}
\end{equation*}
$$

Again integrate (3.20) with respect to t from $(0, T]$ to obtain

$$
\begin{equation*}
\left\|u_{m}\right\|_{L^{2}(0, T ; V)}^{2}:=\int_{0}^{T}\left\|u_{m}(s)\right\|_{V}^{2} d s \leq C(T, \alpha)\left(\left\|u_{0}\right\|^{2}+\|f\|_{L^{2}\left(0, T ; V^{\prime}\right)}^{2}\right) . \tag{3.24}
\end{equation*}
$$

As a consequence, the sequence $\left\{u_{m}\right\}$ is bounded uniformly in the Hilbert space $L^{2}(0, T ; V)$. By weak compactness, we can extract a subsequence called $\left\{u_{m_{l}}\right\} \subset L^{2}(0, T ; V)$ such that

$$
\begin{equation*}
u_{m_{l}} \rightharpoonup u \text { weakly in } L^{2}(0, T ; V) . \tag{3.25}
\end{equation*}
$$

Let N be fixed, but arbitrary with $m_{l}>N$. Note that (3.17) is valid with replacing m by m_{l}. Then multiply the resulting equation by $\psi(t)$ where

$$
\begin{equation*}
\psi(t) \in C^{1}[0, T] \text { with } \psi(T)=0 \tag{3.26}
\end{equation*}
$$

and integrate over $(0, T]$. Then, choose $\psi_{N}=\psi \phi_{N}$ to obtain

$$
\begin{equation*}
\int_{0}^{T}\left\{-\left(u_{m_{l}}(t), \psi_{N}^{\prime}(t)\right)+a\left(t ; u_{m_{l}}(t), \psi_{N}(t)\right)\right\} d t=\int_{0}^{T}\left\langle f(t), \psi_{N}(t)\right\rangle d t+\left(u_{0 m_{l}}, \psi_{N}(0)\right) \tag{3.27}
\end{equation*}
$$

By (3.25), we now pass the limit in (3.27) as $m_{l} \rightarrow \infty$ to find that

$$
\begin{equation*}
\int_{0}^{T}\left\{-\left(u(t), \psi_{N}^{\prime}(t)\right)+a\left(t ; u(t), \psi_{N}(t)\right)\right\} d t=\int_{0}^{T}\left\langle f(t), \psi_{N}(t)\right\rangle d t+\left(u_{0}, \psi_{N}(0)\right) \tag{3.28}
\end{equation*}
$$

Note that (3.28) holds for any ψ satisfying (3.26). Hence, the equation (3.28) makes sense if $\psi \in \mathcal{D}(0, T)$. With $\psi \in \mathcal{D}(0, T)$, (3.28) reduce to

$$
\begin{equation*}
\left\langle\frac{d u}{d t}(t), \phi_{N}\right\rangle+a\left(t ; u(t), \phi_{N}\right)=\left\langle f(t), \phi_{N}\right\rangle . \tag{3.29}
\end{equation*}
$$

Here, the derivative is taken in the sense of distribution, that is, in $\mathcal{D}^{\prime}(0, T)$. Thus,

$$
\begin{equation*}
\left\langle\frac{d u}{d t}(t), \phi_{N}\right\rangle+\left\langle\mathcal{A}(t) u(t), \phi_{N}\right\rangle=\left\langle f(t), \phi_{N}\right\rangle . \tag{3.30}
\end{equation*}
$$

Note that in (3.29), N can be arbitrary.
Since finite linear combinations of $\left\{\phi_{j}\right\}$ are dense in V, the equation (3.29) is valid for any $v \in V$ and hence, we arrive at

$$
\begin{equation*}
\frac{d u}{d t}=-\mathcal{A}(t) u+f \text { in } V^{\prime} \tag{3.31}
\end{equation*}
$$

as $\frac{d u}{d t}=-\mathcal{A}(t) u+f \in L^{2}\left(0, T ; V^{\prime}\right)$. Thus, $u \in L^{2}(0, T ; V)$ and $u_{t} \in L^{2}\left(0, T ; V^{\prime}\right)$.
In oder to obtain $u(0)=u_{0}$, note that from (3.27) holds true if ψ_{N} is replaced by $\psi \in$ $C^{1}([0, T] ; V)$ and obtain

$$
\begin{equation*}
\int_{0}^{T}\left\{-\left(u_{m_{l}}(t), \psi_{t}(t)\right)+a\left(t ; u_{m_{l}}(t), \psi(t)\right)\right\} d t=\int_{0}^{T}(f(t), \psi(t)) d t+\left(u_{m_{l}}(0), \psi(0)\right) \tag{3.32}
\end{equation*}
$$

Taking limit as $m_{l} \rightarrow \infty$ we arrive at

$$
\begin{equation*}
\int_{0}^{T}\left\{-\left(u(t), \psi_{t}(t)\right)+a(t ; u(t), \psi(t))\right\} d t=\int_{0}^{T}(f(t), \psi(t)) d t+\left(u_{0}, \psi(0)\right) \tag{3.33}
\end{equation*}
$$

On the other hand multiply (3.31) by ψ and integrate to obtain

$$
\begin{equation*}
\int_{0}^{T}\left\{-\left(u(t), \psi_{t}(t)\right)+a(t ; u(t), \psi(t))\right\} d t=\int_{0}^{T}(f(t), \psi(t)) d t+(u(0), \psi(0)) . \tag{3.34}
\end{equation*}
$$

Compare (3.33) with (3.34) to arrive at

$$
\left(u_{0}, \psi(0)\right)=(u(0), \psi(0)) .
$$

Since ψ is arbitrary, we now obtain

$$
u(0)=u_{0},
$$

and this completes the rest of the proof.

3.1 Applications

Consider the following linear parabolic initial and boundary value problem: Find $u(x, t)$ in $\Omega \times(0, \infty)$ such that

$$
\begin{align*}
\frac{\partial u}{\partial t}+\mathcal{L}(t) u & =f, \quad x \in Q_{T}:=\Omega \times(0, T] \tag{3.35}\\
u(x, t) & =0, \quad x \in \partial Q_{T}:=\partial \Omega \times(0, T] \tag{3.36}\\
u(x, 0) & =u_{0}, \quad x \in \Omega \tag{3.37}
\end{align*}
$$

where Ω is a bounded domain in \mathbb{R}^{d} with smooth boundary $\partial \Omega$, and

$$
\mathcal{L} \phi:=-\sum_{j, k=1}^{d} \frac{\partial}{\partial x_{k}}\left(a_{j k} \frac{\partial \phi}{\partial x_{j}}\right)+\sum_{j=1}^{d} b_{j} \frac{\partial \phi}{\partial x_{j}}+a_{0} \phi .
$$

Below, we make reasonable assumptions on the coefficients, on f and u_{0}.
Assumptions. Assume that
(i) the elliptic operator \mathcal{L} is elliptic in the sense that there is a positive constant $\alpha_{0}>0$ such that

$$
\sum_{j, k=1}^{d} a_{j k} \xi_{j} \xi_{k} \geq \alpha_{0} \sum_{j=1}^{d}\left|\xi_{j}\right|^{2} \quad \forall 0 \neq \xi \in \mathbb{R}^{d}
$$

(ii) $a_{j k} ; b_{j}, a_{0} \in L^{\infty}\left(Q_{T}\right)$ with $a_{j k}=a_{k j}$.
(iii) $f \in L^{2}\left(Q_{T}\right)$ and $u_{0} \in L^{2}(\Omega)$.

We now associate with the elliptic operator \mathcal{L} a bilinear form $a(t, \cdot, \cdot)$ as
$a(t ; v, w):=\sum_{j, k=1}^{d} \int_{\Omega} a_{j k} \frac{\partial v}{\partial x_{j}} \frac{\partial w}{\partial x_{k}} d x+\sum_{j=1}^{d} \int_{\Omega} \frac{\partial v}{\partial x_{j}} w d x+\int_{\Omega} v w d x, v, w \in H_{0}^{1}(\Omega)$, a.e. $t \in(0, T]$.

To put our problem in the abstract framework like (3.4)-(3.5), we now associate with $u(x, t)$ a mapping $u:(0, T] \longrightarrow H_{0}^{1}(\Omega)$ defined by

$$
[u(t)](x)=u(x, t), \quad x \in \Omega, t \in[0, T] .
$$

Essentially for fixed t in $(0, T], u(t) \in H_{0}^{1}(\Omega)$. Similarly, $f(x, t)$ can be defined as a map $f:[0, T] \longrightarrow L^{2}(\Omega)$ given by

$$
[f(t)](x)=f(x, t), \quad x \in \Omega, t \in[0, T] .
$$

Moreover, because of our assumption it is easy to check that the bilinear form satisfies the following estimates:

- Boundedness. There is a positive constant M such that the biliear form is bounded in the sense that for $v, w \in H_{0}^{1}(\Omega)$,

$$
|a(t, v, w)| \leq M\|v\|_{H_{0}^{1}(\Omega)}\|w\|_{H_{0}^{1}(\Omega)}
$$

- Garding type inequality. There exist two real constant $\alpha>0$ and β such that for $v \in H_{0}^{1}(\Omega)$,

$$
a(t ; v, v) \geq \alpha\|v\|_{H_{0}^{1}(\Omega)}^{2}-\beta\|v\|_{L^{2}(\Omega)} .
$$

Problem 3.1 Verify above two properties for the bilinear form.

Since for fixed $t \in(0, T]$ and fixed $v \in H_{0}^{1}(\Omega)$, the bilinear form $a(t ; v, \cdot)$ can be thought of as a linear form on $H_{0}^{1}(\Omega)$, which is bounded because of the boundedness of the biliear form, therefore, by Ritz-Representation theorem, we can associate with this an abstract bounded linear operator $\mathcal{A}(t): H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ such that

$$
\begin{equation*}
\langle\mathcal{A}(t) v, w\rangle:=a(t ; v, w), w \in H_{0}^{1}(\Omega) \tag{3.38}
\end{equation*}
$$

where $H^{-1}(\Omega)$ is the dual space of $H_{0}^{1}(\Omega)$, and $\langle\cdot, \cdot\rangle$ is the duality pairing between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$.

Set $V=H_{0}^{1}(\Omega)$ and $H=L^{2}(\Omega)$. Note that $V^{\prime}=H^{-1}(\Omega)$ is the dual space of V and it is easy to check that V, H, V^{\prime} forms a Gelfand triplet. Thus, one can write (3.35) -(3.37) in abstract form as:

$$
u_{t}+\mathcal{A}(t) u=f(t) \quad \text { in } V^{\prime}
$$

with $u(0)=u_{0} \in H$.
Note the using boundedness of the bilinear form, the hypothesis (A1) is satisfied and further, due to Garding type inequality, the operator $\mathcal{A}(t)$ satisfies ($A 2$). Therefore, we apply Theorem 3.1 to discuss existence of a unique weak solution of (3.35)-(3.37).

References

[1] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, AMS, Providence, Rhode Island, 1998 (Reprinted 2002).

