Linear Evolution Equations: Linear Parabolic PDE

AMIYA K PANI

INDUSTRIAL MATHEMATICS GROUP DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY BOMBAY POWAI, MUMBAI-400076 akp@math.iitb.ac.in

1 Introduction

In these lectures, we discuss the existence and uniqueness of weak solution to the following class of second order linear parabolic differential equations:

$$\frac{\partial u}{\partial t} + \mathcal{A}(t)u = f \tag{1.1}$$

and initial condition:

$$u(0) = u_0,$$

where Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$, and T > 0 fixed. Further $f: \Omega \times (0,T] \to \mathbb{R}$ and $u_0: \Omega \to \mathbb{R}$ are given functions in their respective domains of definition. Here u = u(x,t) defined on $\Omega \times (0,T]$ is unknown and $\mathcal{A}(t)$ is an elliptic differential operator. Note that we, at this stage, do not spell out the form of \mathcal{A} and also the boundary condition.

Since we are dealing with functions in space-time domain, therefore, in the beginning, we discuss Banach space valued distributions and function spaces. Then, we define weak formulation and establish abstract theory for solvability of the weak formulation.

2 Banach Space Valued Distributions and Function Spaces

Since the problem (1.1) is defined on a space-time domain, we shall study some function spaces defined on space-time domain.

Let X be a Banach space with $\|\cdot\|_X$. We now denote X-valued L^p spaces by $L^p(0,T;X)$, which consists of all strongly measurable functions $v:(0,T] \to X$ such that

$$\|v\|_{L^p(0,T;X)} := \left(\int_0^T \|v(t)\|_X^p dt\right)^{\frac{1}{p}} < \infty, \quad 1 \le p < \infty$$

and for $p = \infty$

$$||v||_{L^p(0,T;X)} := \operatorname{essup}_{0 \le t \le T} ||v(t)||_X < \infty.$$

The space C([0,T];X) consists of all continuous $v:[0,T] \to X$ such that

$$\|v\|_{C([0,T];X)} := \max_{0 \le t \le T} \|v(t)\|_X < \infty.$$

Definition 2.1 Weak Derivative: For $u \in L^1(0,T;X)$, $v \in L^1(0,T;X)$ is called its weak derivative, that is, $u_t = v$ if

$$\int_0^T \phi_t(t)u(t)dt = -\int_0^T \phi(t)v(t)dt$$

for all scalar test functions $\phi \in \mathcal{D}(0,T)$. Here, $\mathcal{D}(0,T)$ is test space defined on (0,T), that is, it is the space of infinitely differentiable functions with compact support in (0,T).

Definition 2.2 (Space-time Sobolev Space): The space $W^{1,p}(0,T;X)$ is defined as

$$W^{1,p}(0,T;X) := \left\{ u \in L^p(0,T;X) : u_t \text{ exits and } u_t \in L^p(0,T;X) \right\}.$$

On $W^{1,p}(0,T;X)$, define its norm as

$$\|u\|_{W^{1,p}(0,T;X)} := \left(\int_0^T (\|u(t)\|_X^p + \|u_t(t)\|_X^p) dt\right)^{\frac{1}{p}}, \quad 1 \le p < \infty$$

and for $p = \infty$

$$\|v\|_{W^{1,\infty}(0,T;X)} := \operatorname{essup}_{0 \le t \le T}(\|u(t)\|_X + \|u_t(t)\|_X).$$

Hence forward for p = 2, we write

$$H^1(0,T;X) := W^{1,2}(0,T;X)$$

Below, we state without proof two theorems on calculus in an abstract space. For a proof, we refer to pp. 286-288 of Evans [1]

Theorem 2.1 Let $u \in W^{1,p}(0,T;X)$, $1 \le p \le \infty$. Then the followings hold:

- (i) $u \in C([0,T];X)$ after eventual modification on a set of measure zero.
- (*ii*) $u(t) = u(s) + \int_{s}^{t} u'(\tau) d\tau \quad 0 \le s \le t \le T.$
- (iii) Further,

$$\max_{t \in [0,T]} \|u(t)\|_X \le C \|u\|_{W^{1,p}(0,T;X)}$$

where C depends on T.

Note in Theorem 2.1, u and $u' \in L^p(0,T;X)$. Now what can be said if u and u' belong to different spaces and the answer to this question can be found from the results of the following Theorem.

Theorem 2.2 Let $u \in L^p(0,T;V)$ and $u_t \in L^p(0,T;V')$ where V' is the dual space of V with $V \hookrightarrow H = H' \subset V'$. Then, followings hold:

- (i) $u \in C([0,T]; H)$ after possible modification on a set of measure zero.
- (ii) The mapping $t \to ||u(t)||_H$ is absolutely continuous with

$$\frac{d}{dt}\|u(t)\|_{H}^{2} = 2\langle u_{t}(t), u(t)\rangle \text{ for a.e. } t \in [0,T]$$

(iii) Moreover, there is a positive constant C = C(T) such that

$$\max_{t \in [0,T]} \|u(t)\|_H \le C \ (\|u(t)\|_{L^2(0,T;V)} + \|u_t(t)\|_{L^2(0,T;V')}).$$

3 Abstract Formulation and Wellposedness

Given two separable Hilbert spaces H and V with dual H' of H identified as H, consider the Gelfand triplet

$$V \hookrightarrow H = H' \hookrightarrow V' \tag{3.2}$$

where \hookrightarrow is continuous and dense embedding and V' is the dual of V. We now denote by (\cdot, \cdot) an inner product in H and $\langle \cdot, \cdot \rangle$ duality parring between V' and V. Note that the following relation holds for $v \in H$ and $w \in V'$

$$\langle v, w \rangle = (v, w).$$

Below, we make the following assumptions:

(A1) $\mathcal{A}(t) \in \mathcal{L}(V, V')$ depends continuously on $t \in [0, T]$

Now associate with $\mathcal{A}(t)$, a bilinear form on V given by

$$v, w \mapsto a(t; v, w)$$
 for each $t \in [0, T]$.

which satisfies

$$a(t; v, w) = \langle \mathcal{A}(t)v, w \rangle.$$
(3.3)

Further assume that the bilinear form satisfies the following Garding type inequality:

(A2) For $v \in V$ there exist real constants $\alpha > 0$ and β such that

$$\langle \mathcal{A}(t)v, w \rangle = a(t; v, w) \ge \alpha \|v\|_V^2 - \beta \|w\|_H^2.$$

Now consider the following abstract evolution problem: For a given $f \in L^2(0,T;V')$ and $u_0 \in H$ find $u \in L^2(0,T;V)$ with $u_t \in L^2(0,T;V')$ satisfying

$$\frac{du}{dt} + \mathcal{A}(t)u = f(t) \quad \text{in } V', \text{ for a.e } t \in [0, T],$$
(3.4)

with initial condition

$$u(0) = u_0. (3.5)$$

Below, we establish the main theorem on solvability of the problem (3.4)-(3.5).

Theorem 3.1 Let H, V and A(t) be as given above. Further, let assumptions (A1)-(A2) hold. Then for a given $f \in L^2(0,T;V')$ and $u_0 \in H$, the problem (3.4)-(3.5) has a unique solution $u \in L^2(0,T;V)$ with $u_t \in L^2(0,T;V')$.

Proof: We shall first prove uniqueness. Assume that the solution is not unique, that is, u_1 and u_2 are two distinct solutions of (3.4)-(3.5) with $u_1 \neq u_2$. Note, u_i satisfies

$$\frac{du_i}{dt} + \mathcal{A}(t)u_i = f, \qquad (3.6)$$

$$u_i(0) = u_0. (3.7)$$

With $w = u_1 - u_2$, now u satisfies

$$\frac{dw}{dt} + \mathcal{A}(t)w = 0, \qquad (3.8)$$

with

$$w(0) = 0. (3.9)$$

Taking duality between w and (3.8), we arrive at

$$\langle \frac{dw}{dt}, w \rangle + \langle \mathcal{A}(t)w, w \rangle = 0$$

Using (3.3) and (ii) of Theorem 2.2, we obtain

$$\frac{1}{2}\frac{d}{dt}\|w(t)\|_{H}^{2} + a(t;w,w) = 0.$$
(3.10)

Applying Garding type inequality for the bilinear form a(t; w, w) and find that (3.10) becomes

$$\frac{d}{dt}\|w(t)\|_{H}^{2} + 2\alpha\|w(t)\|_{V}^{2} - 2\beta\|w(t)\|_{H}^{2} \le 0$$
(3.11)

Using integrating factor $e^{-2\beta t}$, we rewrite (3.11) as

$$\frac{d}{dt}(e^{-2\beta t}\|w(t)\|_{H}^{2}) + 2\alpha e^{-2\beta t}\|w(t)\|_{V}^{2} \le 0$$
(3.12)

and hence, integrating with respect to t from 0 to t^* , we obtain

$$e^{-2\beta t^*} \|w(t^*)\|_H^2 + 2\alpha \int_0^{t^*} e^{-2\beta s} \|w(s)\|_V^2 ds \le 0.$$

Therefore, w = 0, that is, $u_1 = u_2$ and it leads to a contradiction. Hence, the solution of (3.4)-(3.5) is unique.

For existence, we use Bubnov-Galerkin method. Assume that $\{\phi\}_{j=1}^{\infty}$ forms a basis of V in the sense that for every m; $\{\phi_1, \phi_2, \cdots, \phi_m\}$ are linearly independent and the linear combinations $\sum_{j=1}^{m} \xi_j \phi_j$, $\xi_j \in \mathbb{R}$ are dense in V.

For a fixed m, let $V_m = \text{span}\{\phi_1, \phi_2, \cdots, \phi_m\}$ and let P_m be the orthogonal projection from H onto V_m . We now seek a function $u_m : [0, T] \to V_m$ of the form

$$u_m(t) := \sum_{j=1}^m g_{jm}(t)\phi_j,$$
(3.13)

where g_{jm} 's are chosen so that

$$\left(\frac{d}{dt}u_m(t),\phi_k\right) + a(t;u_m(t),\phi_k) = \langle f(t),\phi_k\rangle, \quad 1 \le k \le m$$
(3.14)

and

$$u_m(0) = P_m u_0 := \sum_{j=1}^m \xi_{jm} \phi_j.$$
(3.15)

with

$$P_m u_0 := \sum_{j=1}^m \xi_{jm} \phi_j \to u_0 \quad \text{in } H \text{ as } m \to \infty$$
(3.16)

The system (3.14)-(3.15) leads to a system of linear ODE and hence, by Picard's theorem there exists a unique solution to (3.14)-(3.15). Now, it remains to show that $\lim_{m\to\infty} u_m(t) = u(t)$ and the limiting function u is a solution of (3.4)-(3.5).

Multiply (3.14) by $g_{km}(t)$ and summing over k, we arrive at

$$(\frac{d}{dt}u_m(t), u_m(t)) + a(t; u_m(t), u_m(t)) = (f(t), u_m(t))$$

and hence,

$$\frac{1}{2}\frac{d}{dt}\|u_m(t)\|_H^2 + a(t;u_m(t),u_m(t)) = \langle f(t),u_m(t) \rangle.$$
(3.17)

For $\langle f(t), u_m(t) \rangle$, use Cauchy-Schwartz to arrive at

$$\langle f(t), u_m(t) \rangle \le \| f(t) \|_{V'} \| u_m(t) \|_V$$
 (3.18)

Use Young's inequality $ab \leq \frac{1}{2\epsilon}a^2 + \frac{\epsilon}{2}b^2$ $a, b \geq 0, \epsilon > 0$ to (3.18) to find that

$$\langle f(t), u_m(t) \rangle \le \frac{1}{2\epsilon} \| f(t) \|_{V'}^2 + \frac{\epsilon}{2} \| u_m(t) \|_{V}^2$$
(3.19)

On substituting (3.19) in (3.17) and for the bilinear form $a(t; \cdot, \cdot)$, use Garding type inequality with $\epsilon = \alpha$, we obtain

$$\frac{d}{dt} \|u_m(t)\|_H^2 + \alpha \|u_m(t)\|_H^2 \le \frac{1}{\alpha} \|f(t)\|_{V'}^2 + 2\beta \|u_m(t)\|_H^2.$$
(3.20)

Setting $y(t) = ||u_m(t)||_H^2$ and $z(t) = ||f(t)||_{V'}^2$, we rewrite (3.20) as

$$\frac{d}{dt}y(t) \le \frac{1}{\alpha}z(t) + 2\beta y(t). \tag{3.21}$$

Apply Gronwall's inequality to obtain

$$y(t) \le e^{2\beta t}(y(0) + \frac{1}{\alpha} \int_0^t z(s) \, ds).$$
 (3.22)

Note that

$$y(0) = ||u_m(0)||_H^2 \le C ||u_0||^2.$$

Thus, we arrive at

$$||u_m(t)||_H^2 \le C(||u_0||^2 + \int_0^t ||f(s)||_{V'}^2 ds).$$

Taking maximum in time from 0 to T, we find that

$$\max_{0 \le t \le T} \|u_m(t)\|_H^2 \le C(\|u_0\|^2 + \int_0^T \|f(s)\|_{V'}^2 \, ds),$$

and hence,

$$|u_m|_{L^{\infty}(0,T;H)}^2 \le C(||u_0||^2 + ||f||_{L^2(0,T;V')}^2).$$
(3.23)

Again integrate (3.20) with respect to t from (0,T] to obtain

$$\|u_m\|_{L^2(0,T;V)}^2 := \int_0^T \|u_m(s)\|_V^2 ds \le C(T,\alpha)(\|u_0\|^2 + \|f\|_{L^2(0,T;V')}^2).$$
(3.24)

As a consequence, the sequence $\{u_m\}$ is bounded uniformly in the Hilbert space $L^2(0,T;V)$. By weak compactness, we can extract a subsequence called $\{u_{m_l}\} \subset L^2(0,T;V)$ such that

$$u_{m_l} \rightharpoonup u \quad \text{weakly in } L^2(0,T;V).$$
 (3.25)

Let N be fixed, but arbitrary with $m_l > N$. Note that (3.17) is valid with replacing m by m_l . Then multiply the resulting equation by $\psi(t)$ where

$$\psi(t) \in C^1[0,T] \text{ with } \psi(T) = 0,$$
 (3.26)

and integrate over (0, T]. Then, choose $\psi_N = \psi \phi_N$ to obtain

$$\int_0^T \{-(u_{m_l}(t), \psi'_N(t)) + a(t; u_{m_l}(t), \psi_N(t))\} dt = \int_0^T \langle f(t), \psi_N(t) \rangle \ dt + (u_{0m_l}, \psi_N(0)).$$
(3.27)

By (3.25), we now pass the limit in (3.27) as $m_l \to \infty$ to find that

$$\int_{0}^{T} \{-(u(t), \psi_{N}'(t)) + a(t; u(t), \psi_{N}(t))\} dt = \int_{0}^{T} \langle f(t), \psi_{N}(t) \rangle dt + (u_{0}, \psi_{N}(0)).$$
(3.28)

Note that (3.28) holds for any ψ satisfying (3.26). Hence, the equation (3.28) makes sense if $\psi \in \mathcal{D}(0,T)$. With $\psi \in \mathcal{D}(0,T)$, (3.28) reduce to

$$\langle \frac{du}{dt}(t), \phi_N \rangle + a(t; u(t), \phi_N) = \langle f(t), \phi_N \rangle.$$
(3.29)

Here, the derivative is taken in the sense of distribution, that is, in $\mathcal{D}'(0,T)$. Thus,

$$\langle \frac{du}{dt}(t), \phi_N \rangle + \langle \mathcal{A}(t)u(t), \phi_N \rangle = \langle f(t), \phi_N \rangle.$$
(3.30)

Note that in (3.29), N can be arbitrary.

Since finite linear combinations of $\{\phi_j\}$ are dense in V, the equation (3.29) is valid for any $v \in V$ and hence, we arrive at

$$\frac{du}{dt} = -\mathcal{A}(t)u + f \text{ in } V', \qquad (3.31)$$

as $\frac{du}{dt} = -\mathcal{A}(t)u + f \in L^2(0,T;V')$. Thus, $u \in L^2(0,T;V)$ and $u_t \in L^2(0,T;V')$.

In oder to obtain $u(0) = u_0$, note that from (3.27) holds true if ψ_N is replaced by $\psi \in C^1([0,T]; V)$ and obtain

$$\int_0^T \{-(u_{m_l}(t),\psi_t(t)) + a(t;u_{m_l}(t),\psi(t))\} dt = \int_0^T (f(t),\psi(t)) dt + (u_{m_l}(0),\psi(0)).$$
(3.32)

Taking limit as $m_l \to \infty$ we arrive at

$$\int_0^T \{-(u(t), \psi_t(t)) + a(t; u(t), \psi(t))\} dt = \int_0^T (f(t), \psi(t)) dt + (u_0, \psi(0)).$$
(3.33)

On the other hand multiply (3.31) by ψ and integrate to obtain

$$\int_0^T \{-(u(t), \psi_t(t)) + a(t; u(t), \psi(t))\} dt = \int_0^T (f(t), \psi(t)) dt + (u(0), \psi(0)).$$
(3.34)

Compare (3.33) with (3.34) to arrive at

$$(u_0, \psi(0)) = (u(0), \psi(0)).$$

Since ψ is arbitrary, we now obtain

$$u(0) = u_0,$$

and this completes the rest of the proof.

3.1 Applications

Consider the following linear parabolic initial and boundary value problem: Find u(x,t) in $\Omega \times (0,\infty)$ such that

$$\frac{\partial u}{\partial t} + \mathcal{L}(t)u = f, \quad x \in Q_T := \Omega \times (0, T], \tag{3.35}$$

$$u(x,t) = 0, \quad x \in \partial Q_T := \partial \Omega \times (0,T], \tag{3.36}$$

$$u(x,0) = u_0, \quad x \in \Omega,$$
 (3.37)

where Ω is a bounded domain in \mathbb{R}^d with smooth boundary $\partial\Omega$, and

$$\mathcal{L}\phi := -\sum_{j,k=1}^{d} \frac{\partial}{\partial x_k} \left(a_{jk} \frac{\partial \phi}{\partial x_j} \right) + \sum_{j=1}^{d} b_j \frac{\partial \phi}{\partial x_j} + a_0 \phi.$$

Below, we make reasonable assumptions on the coefficients, on f and u_0 .

Assumptions. Assume that

(i) the elliptic operator \mathcal{L} is elliptic in the sense that there is a positive constant $\alpha_0 > 0$ such that

$$\sum_{j,k=1}^d a_{jk} \,\xi_j \xi_k \ge \alpha_0 \sum_{j=1}^d |\xi_j|^2 \quad \forall 0 \neq \xi \in \mathbb{R}^d.$$

- (ii) $a_{jk}; b_j, a_0 \in L^{\infty}(Q_T)$ with $a_{jk} = a_{kj}$.
- (iii) $f \in L^2(Q_T)$ and $u_0 \in L^2(\Omega)$.

We now associate with the elliptic operator $\mathcal L$ a bilinear form $a(t,\cdot,\cdot)$ as

$$a(t;v,w) := \sum_{j,k=1}^d \int_{\Omega} a_{jk} \frac{\partial v}{\partial x_j} \frac{\partial w}{\partial x_k} \, dx + \sum_{j=1}^d \int_{\Omega} \frac{\partial v}{\partial x_j} w \, dx + \int_{\Omega} v \, w \, dx, \ v,w \in H^1_0(\Omega), \ \text{a.e.} \ t \in (0,T].$$

To put our problem in the abstract framework like (3.4)-(3.5), we now associate with u(x,t)a mapping $u: (0,T] \longrightarrow H_0^1(\Omega)$ defined by

$$[u(t)](x) = u(x,t), \quad x \in \Omega, \ t \in [0,T].$$

Essentially for fixed t in (0,T], $u(t) \in H_0^1(\Omega)$. Similarly, f(x,t) can be defined as a map $f:[0,T] \longrightarrow L^2(\Omega)$ given by

$$[f(t)](x) = f(x,t), \quad x \in \Omega, \ t \in [0,T].$$

Moreover, because of our assumption it is easy to check that the bilinear form satisfies the following estimates:

• Boundedness. There is a positive constant M such that the biliear form is bounded in the sense that for $v, w \in H_0^1(\Omega)$,

$$|a(t, v, w)| \le M ||v||_{H^1_0(\Omega)} ||w||_{H^1_0(\Omega)}.$$

• Garding type inequality. There exist two real constant $\alpha > 0$ and β such that for $v \in H_0^1(\Omega)$,

$$a(t; v, v) \ge \alpha \|v\|_{H^1_0(\Omega)}^2 - \beta \|v\|_{L^2(\Omega)}.$$

Problem 3.1 Verify above two properties for the bilinear form.

Since for fixed $t \in (0, T]$ and fixed $v \in H_0^1(\Omega)$, the bilinear form $a(t; v, \cdot)$ can be thought of as a linear form on $H_0^1(\Omega)$, which is bounded because of the boundedness of the biliear form, therefore, by Ritz-Representation theorem, we can associate with this an abstract bounded linear operator $\mathcal{A}(t) : H_0^1(\Omega) \longrightarrow H^{-1}(\Omega)$ such that

$$\langle \mathcal{A}(t)v, w \rangle := a(t; v, w), \quad w \in H_0^1(\Omega), \tag{3.38}$$

where $H^{-1}(\Omega)$ is the dual space of $H^1_0(\Omega)$, and $\langle \cdot, \cdot \rangle$ is the duality pairing between $H^{-1}(\Omega)$ and $H^1_0(\Omega)$.

Set $V = H_0^1(\Omega)$ and $H = L^2(\Omega)$. Note that $V' = H^{-1}(\Omega)$ is the dual space of V and it is easy to check that V, H, V' forms a Gelfand triplet. Thus, one can write (3.35) -(3.37) in abstract form as:

$$u_t + \mathcal{A}(t)u = f(t)$$
 in V'

with $u(0) = u_0 \in H$.

Note the using boundedness of the bilinear form, the hypothesis (A1) is satisfied and further, due to Garding type inequality, the operator $\mathcal{A}(t)$ satisfies (A2). Therefore, we apply Theorem 3.1 to discuss existence of a unique weak solution of (3.35)-(3.37).

References

 L. C. Evans, *Partial Differential Equations*, Graduate Studies in Mathematics, Vol. 19, AMS, Providence, Rhode Island, 1998 (Reprinted 2002).