Dr Debashis Saha
Assistant Professor Grade I (Physics)
  +91 (0)471 - 2778326
  c2FoYUBpaXNlcnR2bS5hYy5pbg==

Google Scholar       ORCiD

  1. Z.P. Xu, D. Saha, K. Bharti, and A. Cabello,
    Certifying Sets of Quantum Observables with Any Full-Rank State,
    Phys. Rev. Lett. 132, 140201 (2024). arXiv: 2309.05735 [quant-ph].
  2. R. Santos, D. Saha, F. Baccari, and R. Augusiak,
    Scalable Bell inequalities for graph states of arbitrary prime local dimension and self-testing, 
    New J. Phys. 25, 063018 (2023).  arXiv: 2212.07133 [quant-ph].
  3. D. Saha, D. Das, A. K. Das, B. Bhattacharya, and A. S. Majumdar,
    Measurement incompatibility and quantum advantage in communication, 
    Phys. Rev. A 107, 062210 (2023).  arXiv: 2209.14582 [quant-ph].
  4. S. Sarkar, J. J. Borkala, C. Jebarathinam, O. Makuta, D. Saha, and R. Augusiak,
    Self-testing of any pure entangled state with minimal number of measurements and optimal randomness certification in one-sided device-independent scenario, 
    Phys. Rev. Applied 19, 034038 (2023). arXiv: 2110.15176 [quant-ph].
  5. S. Sarkar, and D. Saha,
    Demonstration of quantum correlations that are incompatible with absoluteness of measurement, 
    Phys. Rev. A 107, 022226 (2023). arXiv: 2107.08447 [quant-ph].
  6. S. Gupta, D. Saha, Z-P Xu, A. Cabello, and A. S. Majumdar,
    Quantum contextuality provides communication complexity advantage, 
    Phys. Rev. Lett. 130, 080802 (2023). arXiv: 2205.03308 [quant-ph].
  7. S. Nandi, D. Saha, D. Home, and A. S. Majumdar,
    Wigner’s approach enabled detection of multipartite nonlocality using all different bipartitions,
    Phys. Rev. A 106, 062203 (2022). arXiv: 2202.11475 
  8. S. Sarkar, D. Saha, and R. Augusiak,
    Certification of incompatible measurements using quantum steering,
    Phys. Rev. A (Letters) 106, 040402 (2022). arXiv: 2107.02937 
  9. D. Das, A. G. Maity, D. Saha, and A. S. Majumdar,
    Robust certification of arbitrary outcome quantum measurements from temporal correlations, 
    Quantum 6, 716 (2022). arXiv: 2110.01041
  10. K. Joarder, D. Saha, D. Home, and U. Sinha,
    Loophole free interferometric test of macrorealism using heralded single photons, 
    PRX Quantum 3, 010307 (2022). arXiv: 2105.11881 
  11. S. Sarkar, D. Saha, J. Kaniewski, and R. Augusiak,
    Self-testing quantum systems of arbitrary local dimension with minimal number of measurements, 
    npj Quantum Information 7, 151 (2021). arXiv:1909.12722 
  12. R. Salazar, M. Kamon, D. Goyeneche, K. Horodecki, D. Saha, R. Ramanathan, P. Horodecki,
    No-go theorem for device-independent security in relativistic causal theories, 
    Phys. Rev. Research 3, 033146 (2021). arXiv: 1712.01030 
  13. C. Datta, T. Biswas, D. Saha, and R. Augusiak,
    Perfect discrimination of quantum measurements using entangled systems, 
    New J. Phys. 23, 043021 (2021). arXiv:2012.07069 
  14. A. Chaturvedi, and D. Saha,
    Quantum prescriptions are more ontologically distinct than they are operationally distinguishable, 
    Quantum 4, 345 (2020).  arXiv:1909.07293
  15. A. Hameedi, B. Marques, P. Mironowicz, D. Saha, M. Pawlowski, and M. Bourennane,
    Experimental test of nonclassicality with arbitrarily low detection efficiency, 
    Phys. Rev. A 102, 032621 (2020). arXiv:1511.06179
  16. D. Saha, R. Santos, and R. Augusiak,
    Sum-of-squares decompositions for a family of noncontextuality inequalities and self-testing of quantum devices, 
    Quantum 4, 302 (2020). arXiv:2002.12216 
  17. D. Saha, M. Oszmaniec, L. Czekaj, M. Horodecki, and R. Horodecki,
    Operational foundations for complementarity and uncertainty relations, 
    Phys. Rev. A 101, 052104 (2020). arXiv:1809.03475
  18. D. Saha, and J. J. Borkala,
    Multiparty quantum random access codes, 
    Europhysics Letters 128, 30005 (2020). arXiv:1905.05668
  19. D. Saha, P. Horodecki, and M. Pawlowski,
    State-independent contextuality advances one-way communication, 
    New J. Phys. 21, 093057 (2019). arXiv:1708.04751
  20. D. Saha, and A. Chaturvedi,
    Preparation contextuality as an essential feature underlying quantum communication advantage, 
    Phys. Rev. A 100, 022108 (2019). arXiv:1802.07215 
  21. M. Czechlewski, D. Saha, A. Tavakoli, and M. Pawlowski,
    Device-independent witness of arbitrary-dimensional quantum systems employing binary-outcome measurements, 
    Phys. Rev. A 98, 062305 (2018). arXiv:1803.05245 
  22. A. Hameedi, D. Saha, P. Mironowicz, M. Pawlowski, and M. Bourennane,
    Complementarity between entanglement -assisted and quantum distributed random access code, 
    Phys. Rev. A 95, 052345 (2017). arXiv:1701.08713 
  23. D. Saha, and R. Ramanathan,
    Activation of monogamy in non-locality using local contextuality, 
    Phys. Rev. A (R) 95, 030104 (2017). arXiv:1606.04021 
  24. Z.P. Xu, D. Saha, H.Y. Su, M. Pawlowski, and J.L. Chen,
    Reformulating Noncontextuality Inequalities in an Operational Approach, 
    Phys. Rev. A 94, 062103 (2016). arXiv:1509.06027 
  25. D. Saha, A. Cabello, S. K. Choudhary, and M. Pawlowski,
    Quantum nonlocality via local contextuality with qubit-qubit entanglement, 
    Phys. Rev. A 93, 042123 (2016). arXiv:1507.08480 
  26. D. Saha, and M. Pawlowski,
    Structure of quantum and broadcasting nonlocal correlations, 
    Phys. Rev. A 92, 062129 (2015). arXiv:1504.05019 
  27. D. Saha, S. Mal, P. K. Panigrahi, and D. Home,
    Wigner's form of the Leggett-Garg inequality, No-Signalling in Time and Unsharp Measurement, 
    Phys. Rev. A 91, 032117 (2015). arXiv:1409.1132 
  28. D. Home, D. Saha, and S. Das,
    Multipartite Quantum Nonlocality by Generalizing Wigner's Argument, 
    Phys. Rev. A 91, 012102 (2015). arXiv:1410.7936 
  29. N. Vyas, D. Saha, and P. K. Panigrahi,
    Rooted-tree network for optimal non-local gate implementation, 
    Quant. Inf. Proc. 15, 3855 (2016). arXiv:1506.08411 
  30. D. Saha, S. Nandan and P. K. Panigrahi,
    Local implementations of non-local quantum gates in linear entangled channel, 
    J. Quant. Info. Sci. 4, 97-103 (2014). arXiv:1206.6323 
  31. D. Saha, and P. K. Panigrahi,
    N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel, 
    Quant. Inf. Proc. 11, 615 (2012). arXiv:1105.4160 


Preprints

  1. P. P. Nath, D. Saha, D. Home, and U. Sinha
    Single system based generation of certified randomness using Leggett-Garg inequality,
    arXiv: 2402.03712 [quant-ph].
  2. S. Ray, V. R., and D. Saha,
    No epistemic model can explain anti-distinguishability of quantum mixed preparations,
    arXiv: 2401.17980 [quant-ph].
  3. S. Manna, A. Chaturvedi, and D. Saha,
    Unbounded quantum advantage in communication complexity measured by distinguishability,
    arXiv: 2401.12903 [quant-ph].
  4. A. K. Das, S. Mukherjee, D. Saha, D. Das, and A. S. Majumdar,
    An operational approach to classifying measurement incompatibility,
    arXiv: 2401.01236 [quant-ph].
  5. A. Mitra, D. Saha, S. Bhattacharya, and A. S. Majumdar,
    Relating CP divisibility of dynamical maps with compatibility of channels,
    arXiv: 2309.10806 [quant-ph].
  6. A. Chaturvedi, M. Pawlowski, and D. Saha,
    Quantum description of reality is empirically incomplete,
    arXiv: 2110.13124 [quant-ph].