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1 Introduction.

In this section, we discuss scalar ODE, system of ODE, and ODEs in infine-dimensional
Banach spaces.

1.1 Scalar ODE.

Simplest ODE that we come across is:

du

dt
=au, t > 0, a ∈ R, (1.1)

u(0) =v ∈ R

It’s solution is given by u(t) = eat v t > 0.
We now make some simple observations depending the real parameter a.

• If a < 0, every solution tends to zero as t→∞, that is, zero solution is
asymptotically stable.

• In case a = 0, then zero solution is stable, but not asymptotically stable.

• If a > 0, then zero solution is unstable.

Setting E(t) = eat, we note that {E(t)}t∈R is a family of bounded linear map from R into
itself and this family satisfies E(0) = 1, E(t+ s) = E(t)E(s) and E(−t) = (E(t))−1.
Hence, {E(t)}t∈R forms a multiplicative group. Further,

lim
t→0

E(t) = 1 = E(0).

If we restrict t ≥ 0, then {E(t)}t≥0 forms a semi-group of bounded linear operators. Now
to every DE(1.1), we attach a unique family {E(t)}t>0 of semigroup satisfying

E(0) =1, (1.2)

E(t+ s) =E(t)E(s), t, s ≥ 0, (1.3)

lim
t→0+

E(t) =1. (1.4)

The last property is connected to the uniform continuity property of the family of
semigroups.
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Conversely to each family {E(t)}t>0 satisfying (1.2), we can attach an ODE (1.1), where
the generator

lim
t→0+

E(t)− 1

t
= a.

Thus, the existence, uniqueness and continuous dependence property for all time ( called
stability ) of the solution of the ODE (1.1) is intimately connected to the family {E(t)}t≥0

of uniformly continuous semigroup of bounded linear operators whose generator is a.

1.2 System of ODEs.

To generalize it further, consider a system of linear ODEs:

du

dt
=Au, (1.5)

u(0) =v ∈ RN ,

where for each t ≥ 0, u(t) ∈ RN , A is N ×N real matrix and v ∈ RN . This problem has a
unique solution for all t ≥ 0. Its solution can be written as u(t) = etA v. Note that

etA :=
∞∑
j=0

Ajtj

j!
with A0 = I, (1.6)

where I = IN×N identity matrix. With E(t) = etA, we write the solution u as
u(t) := E(t)v. Now consider the family {E(t)}t>0. Note that if B1 and B2 are N ×N
matrices with B1 commutes with B2, that is B1B2 = B2B1, then

et(B1+B2) = etB1 etB2 .

Therefore, the semigroup property

E(t+ s) = e(t+s)A = etA esA = E(t)E(s)

is satisfied. Further, for any matrix B subordinated to a norm say ‖ · ‖ on RN ,

‖etB‖ ≤
∞∑
j=0

‖B‖jtj

j!
≤
∞∑
j=0

(‖B‖ t)j

j!
= e‖B‖ t, (1.7)

and hence, the family {E(t)}t>0 forms a semigroup of bounded linear operator from RN to
itself. Observe that this family forms an uniformly continuous semigroup {E(t)}t>0 in the
sense that

lim
t→0+

E(t) = I.

Note that its generator is

A = lim
t→0+

E(t)− I
t

.

Then, we can associate with a family of uniformly continuous semi-group, the solvability
of the system of ODEs (1.5).
In addition, if we assume A is a real symmetric matrix, then A is diagonalizable. Let
λj , j = 1, · · · , N ( may be repeated) be the eigenvalues and the corresponding normalized
eigenvectors be ϕj , j = 1, · · · , N. Since A is symmetric, the set of eigenvectors {ϕj}Nj=1
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forms an orthonormal basis of RN . Then (1.5) can be written in diagonalized form. Since
each u(t) is a vector in RN , then, we can express

u(t) =
N∑
j=1

αj(t) ϕj ,

where αj j = 1, · · · , N are unknowns and can be found out from the N set of scalar ODEs:

α′j(t) =λjαj , j = 1...N, (1.8)

αj(0) =(v, ϕj). (1.9)

The solution of (1.8) can be written as αj(t) = eλjtαj(0). Hence,

u(t) =
N∑
j=1

eλjtαj(0) ϕj (1.10)

=
N∑
j=1

eλjt(v, ϕj) ϕj , (1.11)

and the semigroup E(t) has a representation:

u(t) = E(t)v =

N∑
j=1

eλjt(v, ϕj) ϕj . (1.12)

If all the eigenvalues are negative, then u(t)→ 0 and hence, the zero solution is
asymptotic stable. Further, atleast one eigenvalue is 0 and rest eigenvalues have negative
real part, then zero solution is stable. In case, one eigenvalue is positive, then the zero
solution. unstable.
For non-homogeneous system of linear ODE of the form:

du

dt
= Au+ f(t), t > 0, (1.13)

u(0) = v ∈ RN ,

where f(t) ∈ RN . Using Duhamel’s principle, we with the help of semigroup E(t) obain a
representation of solution as

u(t) := E(t)v +

∫ t

0
E(t− s) f(s) ds. (1.14)

1.3 ODE in Banach Spaces.

Let X be a Banach space with norm ‖ · ‖. Now, consider the following evolution equation:

du

dt
=Au(t), t ≥ 0, (1.15)

u(0) =v ∈ X,

where A is a bounded linear operator on X to itself, that is, A ∈ BL(X). Its solution u
can be written as

u = eAt v,
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where representation of etA is given as in (1.6). With E(t) = etA, as in the previous
subsection we can show that the family {E(t)}t>0 forms uniformly continuous semigroup
of bounded linear operators on the Banach space X.
For non-homogeneous linear ODE in Banach space X we can have exactly the same
representation of solution u as in (1.14).
When X is a Hilbert space with inner-product (·, ·) and A is a selfadjoint1, compact linear
operator on X, then it has countable number of real eigenvalues {λj}∞j=1. Then consider
the corresponding set of normalised eigenvectors {ϕj}∞j=1. Indeed, {ϕj}∞j=1 forms an
orthonormal basis of X. If

u(t) =
∞∑
j=1

αj(t)ϕj , where αj(t) = (u(t), ϕj), (1.16)

then using orthonormal property, we obtain the followinf infinite system of scalar ODEs:

α′j(t) = λjαj , αj(0) = (v, ϕj),

where (·, ·) is the inner-product on X. On solving

αjt = eλjtαj(0).

Hence

E(t)v = u(t) =
∞∑
j=1

eλjt(v, ϕj) ϕj .

When ‖ · ‖ is the induced norm on X and at least one eigenvalue is zero with all are
negative, then

‖E(t)v‖ = ‖u(t)‖ ≤
∞∑
j=1

‖(v, ϕj) ϕj‖ ≤ ‖v‖,

and the solution is stable.
Below, we give an example of A as

Au(t) =

∫ t

0
K(t, s)u(s) ds,

where K(·, ·) ∈ L2 × L2 and K(t, s) = K(s, t), that is, K is symmetric. With X = L2, the
operator A ∈ BL(X) and A is self-adjoint. Now, we can write the solution u of (1.15) as

u(t) = E(t)v = etAv,

and we can also have a representation of u through the eigen-vectors. But when
K ∈ C0 ×C0 and K is bounded, then with X = C0 as the Banach space, we can write the
solution in exponential form.
In all the above cases, {E(t)} t>0 is an uniformly continuous semigroup and its generator
is A. Note that the solvability of (1.15) is intimately connected with the existence of a
family of uniformly continuous semigruop E(t) = eAt with its generator as A ∈ BL(X).

1The bounded linear operator A : X −→ X is called self-adjoint, if

(Aφ,ψ) = (φ,Aψ) ∀φ, ψ ∈ X.
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1.4 For more general linear operator on X.

Consider the following linear homogeneous evolution equation :

du

dt
=Au(t), t > 0, (1.17)

u(0) =v,

where A is a linear not necessarily bounded operaor on X with domain D(A) ⊂ X.
In this case, we can ask the following question

Under what condition on A, it generates a semigroup of bounded linear
operators on X ?

If so

Can it have a representation like exponential type?
Like in the previous case, does its have a relation with the solvability of the
abstract evolution equation.

Some of these questions will be answered in the course of these lectures.

2 Semigroups

We begin by the definition of semigroup, and then discuss its properties. Throughout this
section, assume that X is a Banach space with norm ‖ · ‖.

Definition 2.1. A family {E(t)}t>0 of bounded linear operators on X is said to be a
Semigroup on X, if it satisfies

(i) E(0) = I,

(ii) E(t+ s) = E(t)E(s), t, s ≥ 0.

Definition 2.2. A linear operator A defined by

Av = lim
t→0+

E(t) v − v
t

with its domain of definition

D(A) := {v ∈ X : lim
t→0+

E(t) v − v
t

exists}

is called the infinitesimal generator of the family of semigroups {E(t)}t>0.

Definition 2.3. A semigroup is said to be uniformly continuous with respect to operator
norm ‖ · ‖ associated with X, if

lim
t→0+

‖E(t)− I‖ = 0.

Definition 2.4. A semigroup is said to be strongly continuous with respect to norm ‖ · ‖
associated with X, if

lim
t→0+

‖E(t) v − v‖ = 0 for v ∈ X.
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2.1 Uniformly Continuous Semigroups.

In this subsection, we shall discuss uniformly continuous semigroups and their properties.

Theorem 2.5. Assume that the linear operator A ∈ BL(X). Then the family {E(t)}t>0

defined by
E(t) := eAt,

where

etA :=
∞∑
j=0

Ajtj

j!
with A0 = I

forms a uniformly continuous semigroup on X with its infinitesimal generator A.

Proof. Because of (1.7), it follows that

‖E(t)‖ = ‖etA‖ ≤
∞∑
j=0

(‖A‖ t)j

j!
= e‖A‖ t, t > 0,

and hence, E(t) is welldefined with E(0) = I, where I is an identity map on X. Further, it
is easy to show that E(t) satisfies the semigroup property in the definition 2.1 (ii). Now it
remains to show the uniform continuity property. Note that for t > 0

‖E(t)− I‖ ≤
∞∑
j=1

(‖A‖ t)j

j!
= e‖A‖ t − I,

and hence, it tends to zero as t→ 0+. Further,

‖E(t)− I
t

−A‖ ≤ 1

t

∞∑
j=2

(‖A‖ t)j

j!
=

1

t

(
e‖A‖ t − I − t‖A‖

)
→ 0, as t→ 0+,

and hence, A is its infinitesimal generator with D(A) = X. This completes the rest of the
proof. 2

Remark 2.1. If {E(t)}, t ≥ 0 is a uniformly continuous semigroup, then there are
constants ω ≥ 0 and M ≥ 1 such that

‖E(t)‖ ≤Meωt.

Further, for t, s ≥ 0 there holds:

lim
s→t
‖E(t)− E(s)‖ = 0.

To sketch a proof, observe from the property limt→0+ ‖E(t)− I‖ = 0 that for small enough
η > 0 with 0 ≤ s ≤ η there hold: ‖E(s)‖ ≤M. Clearly, M ≥ 1. Now setting t = nη + δ
with 0 ≤ δ < η, it follows from the semigroup property that

‖E(t)‖ = ‖E(nη + δ)‖ = ‖E(δ)
(
E(η)

)n
‖ ≤Mn+1 ≤Men logM ≤Me

t

(
logM/η

)
.

Note that by choosing ω = logM/η, the first part of the result follows. Fo the second
part, observe that for t ≥ s > 0

‖E(t)− E(s)‖ = ‖E(s)(E(t− s)− I)‖ −→ 0 as t→ s,

and this completes the rest of the proof.
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Given a bounded linear operator A on a Banach space, we can attach a uniformly
continuous semigroup E(t) = etA whose infinitesimal generator is A. Now let us ask: given
a uniformly continuous semigroup on X, is it possible to attach a unique bounded linear
operator A on X such that the given semigroup E(t) is of the form etA ?
The answer is in affirmative and it is stated below in terms of a Theorem.

Theorem 2.6. Assume the E(t) is a uniformly continuous semigroup on a Banach space
X. Then, there exists a unique bounded linear operator A on X such that E(t) = etA, for
t > 0.

Proof. By the property of uniformly continuous semigroup we arrive at,

‖E(t)− I‖ −→ 0 as t→ 0+.

Now,it is observed that for small enough ρ > 0, there holds

‖1

ρ

∫ ρ

0
E(s) ds− I‖ < 1.

As a consequence of von-Neumann’s expansion, it follows that 1
ρ

∫ ρ
0 E(s) ds is invertible.

For fixed ρ, we now claim that

A =
(
E(ρ)− I

) (∫ ρ

0
E(s) ds

)−1

is the infinitesimal generator of E(t). Note that as t→ 0+

(
E(t)− I

) (∫ ρ

0
E(s) ds

)
=

1

t

∫ ρ+t

ρ
E(s) ds− 1

t

∫ t

0
E(s) ds −→ E(ρ)− I.

Thus,
E(t)− I

t
−→ A, as t→ 0+.

and it now follows that

A =
(
E(ρ)− I

) (∫ ρ

0
E(s) ds

)−1
.

For uniqueness, assume contrary, that is, the uniqueness does not hold. Thus, assume
there are atleast two distinct uniformly continuous semigroups, say, E(t) and G(t) and
both having the same infinitesimal generator A. For t > 0, set τ = t/n. Then,

G(t)− E(t) = G(nτ)− E(nτ)

=

n−1∑
j=0

G((n− j − 1)τ)
(
G(τ)− E(τ)

)
E(jτ).

As n −→∞, τ −→ 0 and further,

‖G(t)− E(t)‖ ≤ nK(t)‖G(τ)− E(τ)‖

= tK(t)
∥∥∥G(τ)− I

τ
− E(τ)− I

τ

∥∥∥ −→ 0, as τ −→ 0.

Hence, G(t) = E(t) which leads to a contradiction and this completes the rest of the
proof. 2

Below, we establish a connection between the semigroup and the evolution equation.
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Corollary 2.1. Assume that E(t) = etA is a uniformly continuous semigroup with its
infinitesimal generator A ∈ BL(X). Then,

d

dt
E(t) = AE(t) = E(t)A,

and u(t) = E(t)v is a solution of the abstract evolution equation:

du

dt
= Au, t > 0 with u(0) = v ∈ X.

3 Strongly Continuous Semigroups.

In this section, we shall discuss strongly continuous semigroup or C0-Semigroup, its
properties and its relation to abstract evolution equation.

3.1 Properties of the Semigroup.

As in case of uniformly continuous semigroup, we have the following boundedness
property.

Proposition 3.1. Assume that E(t) is a C0-semigroup. Then there are constant M ≥ 1
and real ω such that for t ≥ 0

‖E(t)‖ ≤Meωt.

Proof. As in case of uniformly continuous semi-group, we proceed to prove this exponential
property provided we prove that there exist M ≥ 1 and η > 0 such that for 0 ≤ t ≤ η

‖E(t)‖ ≤M.

Suppose this does not hold, that is, there is a sequence {tm} converging to zero such that
‖E(tm)‖ ≥ m as m→∞. Since from the property of the semigroup, E(tm)v −→ v as
m→∞, therefore, {E(tm)v} is bounded for every v ∈ X. Then, by uniform-boundedness
principle ( Banach-Steinhause Theorem) the sequence {E(tm)} is bounded which leads to
a contradiction. Hence, the result. 2

Theorem 3.1 (Properties). Let E(t) be a C0-semigroup and let A be its infinitesimal
generator with domain D(A) in X. Then the following properties hold:

(i) For v ∈ X,

(a) the map t −→ E(t)v is a continuous from [0,∞) into X.

(b)
∫ t

0 E(s)v ds ∈ D(A) and A
( ∫ t

0 E(s)v ds
)

= E(t)v − v.

(ii) For v ∈ D(A)

(a) E(t)v ∈ D(A), t ≥ 0.

(b) AE(t)v = E(t)Av, t > 0.

(c) the map t −→ E(t)v is differentiable for t > 0.

(d) d
dt(E(t)v) = AE(t)v, t > 0.
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Proof. For (i) (a), note that for any τ ≥ 0

‖E(t+ τ)v − E(t)v‖ ≤ ‖E(t)‖ ‖E(τ)v − v‖
≤ Meωt ‖E(τ)v − v‖.

Then as τ −→ 0 the result follows for the right hand limit. Similarly, we can argue for left
hand limit and then result follows.
For (i) (b), by the continuity of E(t) we observe that for h −→ 0

(E(h)− I)

h

∫ t

0
E(s)v ds =

1

h

(∫ t+h

t
E(s)v ds−

∫ h

0
E(s)v ds

)
−→ E(t)v − v,

and the result follows.
Now for (ii) (a)− (b) since v ∈ D(A), then using semigroup property

lim
h−→0+

E(h) E(t)v − E(t)v

h
= lim

h−→0+

E(t) E(h)v − E(t)v

h

= E(t) lim
h−→0+

E(h)v − v
h

= E(t) Av.

Hence, E(t)v ∈ D(A) and A E(t)v = E(t) Av.
Now for (ii) (c)− (d), observe that for v ∈ D(A),h > 0 and for t > 0

lim
h−→0+

(E(t)v − E(t− h)v

h
− E(t) Av

)
= lim

h−→0+

(
E(t− h)

(E(h)v − v
h

)
− E(t) Av)

)
= lim

h−→0+

(
E(t− h)

(E(h)v − v
h

−Av
)
− (E(t− h)− E(t)) Av

)
−→ 0,

since E(h)v−v
h −→ Av and the semigroup is bounded. Thus,

lim
h−→0+

E(t)v − E(t− h)v

h
= E(t) Av.

Similarly, it is easy to check that

lim
h−→0+

E(t+ h)v − E(t)v

h
= E(t) Av.

Therefore, d
dtE(t)v exists and is equal to E(t) Av for v ∈ D(A). This completes the rest of

the proof. 2

Problem 3.1. Show that for t > s ≥ 0 and for v ∈ D(A)

E(t)v − E(s)v =

∫ t

s
E(τ) Av dτ.

Using this result prove that the infinitesimal generator A defines the semigroup E(t)
uniquely.
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Now we state an important Theorem regarding solvability of the abstract evolution
equation.

Theorem 3.2. Let A is the infinitesimal generator of C0-semigroup {E(t), t ≥ 0} on X
with domain D(A) ⊂ X. Then for v ∈ D(A), u(t) = E(t)v defines a unique solution of the
abstract evolution problem:

du

dt
= Au, t ≥ 0, (3.18)

u(0) = v (3.19)

satisfying u ∈ C0([0,∞);D(A)) ∩ C1([0,∞);X).

Proof. Let v ∈ D(A) and define u(t) := E(t)v. By the Theorem 3.1 (ii) (b), it follows that

AE(t)v = E(t)Av

and by (ii) (c), the mapping
t −→ E(t)Av

is continuously differentiable from [0,∞) into D(A). Further,

d

dt
E(t)v = AE(t)v = E(t)Av,

and hence, u(t) satisfies the abstract evolution equation (3.18) with initial condition
u(0) = v.
For uniqueness, assume contrary, that is, the solution is not unique. Let u and w be two
distinct solutions of the problem (3.18). Define y(t) as

y(s) = E(t− s)w(s), 0 ≤ s ≤ t.

Then,
dy

ds
= −AE(t− s)w(s) + E(t− s)Aw(s) = 0.

and therefore, y(s) = y(0), s ∈ [0, t]. In particular, y(t) = w(t) and y(0) = u(t). Hence,
w(t) = u(t) for all t ≥ 0 which leads to a contradiction. Therefore, the solution is unique
and this concludes the proof. 2

Remark 3.1. Note that if v /∈ D(A), then E(t)v is not differentiable with respect to time.
However, u(t) = E(t)v with v ∈ X can be thought of a generalized solution of (3.18).

Below, we discuss the properties of the generator.

Theorem 3.3 (Properties of the generator). Let A be the infinitesimal generator of a
C0-semigroup {E(t)}. Then, D(A) is dense in X and A is closed.

Proof. For any v ∈ X, from theorem 3.1 (i) (b),
∫ t

0 E(s)v ds ∈ D(A). Setting

vt = 1
t

∫ t
0 E(s)v ds, then each vt ∈ D(A), t > 0. Since E(s)v −→ v as s→ 0, therefore,

vt −→ v. This implies that D(A) is dense in X.
To complete the rest of the proof, we need to prove that the operator A is closed.
Consider any sequence {vn} in D(A) with vn → v in X and Avn → w in X, we now claim
that v ∈ D(A) and w = Av. Note that by the above argument:

E(t)vn − vn
t

=
1

t

∫ t

0
E(s)Avn ds,
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and hence taking limit of both sides as n→∞, we arrive at

E(t)v − v
t

=
1

t

∫ t

0
E(s)w ds.

Now taking t −→ 0 in both sides, it follows that v ∈ D(A) and Av = w. This now
completes the proof. 2

3.2 Hille-Yosida Theorem

Note that for solvability of the abstract evolution equation (3.18)-(3.19), it is more
pertinent to ask the following question:

Under what conditions on the operator A, it generates a C0-semigroup ?

The answer to the above question is given by the Hille-Yosida Theorem.
Below, we give some definitions for our future use.

Definition 3.4. The semigroup E(t) is called a contraction semigroup if ‖E(t)‖ ≤ 1 for
all t ≥ 0.

Definition 3.5. The resolvent set ρ(A) of the operator A is defined as

ρ(A) = {z ∈ C : R(z;A) = (zI −A)−1exits and bounded},

and R(z;A) is called resolvent operator associated with A.

Below, we state the main theorem of this subsection.

Theorem 3.6 (Hille-Yosida Theorem). A linear operator A on X with D(A) ⊂ X is the
infinitesimal generator of a C0-semigroup of contraction E(t) with ‖E(t)‖ ≤ 1 if and only
if

(i) A is closed and D(A) is dense in X.

(ii) ρ(A) ⊃ (0,∞) and ‖R(λ;A)‖ ≤ 1
λ for λ > 0.

For the proof of the above theorem, we require some properties of Resolvent operator,
which are given below.

Lemma 3.1 (Properties of Resolvent Operator). Let A be the infinitesimal generator of a
strongly continuous semigroup E(t) of contraction on X. Then the following properties
hold:

(i) (Resolvent Identity). For real λ and µ in ρ(A),

R(λ;A)−R(µ;A) = (µ− λ) R(λ;A) R(µ;A),

and
R(λ;A) R(µ;A) = R(µ;A) R(λ;A).
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(ii) For λ ∈ ρ(A) and v ∈ X, then λ > 0,

R(λ;A) v :=

∫ ∞
0

e−λsE(s) v ds,

and

‖R(λ;A)‖ ≤ 1

λ
.

Proof. From the definition, it is easy to show (i). For (ii), define for v ∈ X,

R(λ)v =

∫ ∞
0

e−λsE(s) v ds.

Since it is a contraction semigroup and λ > 0, the integral is well-defined. Moreover, the
mapping v −→ R(λ)v is a linear map on X and

‖R(λ)v‖ ≤ ‖v‖
∫ ∞

0
e−λs ds ≤ 1

λ
‖v‖.

This is a bounded linear operator with

‖R(λ)‖ ≤ 1

λ
, λ > 0.

Thus, to complete the proof, it remains to show that

R(λ) = R(λ;A), λ > 0.

Now for h > 0 and v ∈ X, note that by definition(E(h)− I
h

)
R(λ)v =

1

h

∫ ∞
0

e−λs(E(s+ h)v − E(s)v) ds

=
1

h

∫ ∞
0

e−λ(s−h)E(s)v ds− 1

h

∫ ∞
0

e−λsE(s)v ds

=
(eλh − 1

h

)∫ ∞
0

e−λsE(s)v ds− eλh

h

∫ ∞
0

e−λsE(s)v ds

−→ λR(λ)v − v,

as h→ 0. Hence, R(λ)v ∈ D(A) and

AR(λ)v = λR(λ)v − v.

Rewrite it as
(λI −A)R(λ)v = v, for all v ∈ X.

Now, for all v ∈ D(A), observe that

R(λ)Av =

∫ ∞
0

e−λsE(s)Av ds =

∫ ∞
0

e−λs
d

ds
(E(s)v) ds

= λ

∫ ∞
0

e−λsE(a)v ds− v

= λR(λ)v − v,

12



and hence,
R(λ) (λI −A)v = v, for all v ∈ D(A).

Thus,
R(λ) = (λI −A)−1,

and this completes the rest of the proof. 2

Lemma 3.2. If A is defined as in Lemma 3.1, then there holds for all v ∈ X

lim
λ−→∞

λR(λ;A)v = v.

Proof. Let us first prove the result for v ∈ D(A). Using the definition and properties of the
Resolvent operator, it follows that

‖λR(λ;A)v − v‖ = ‖AR(λ;A)v‖ = ‖R(λ;A)Av‖ ≤ 1

λ
‖Av‖,

and as λ→∞ this leads to zero.
Since D(A) is dense in X, for any v ∈ X, there exists a sequence {vn} in D(A) such that

‖λR(λ;A)v − v‖ ≤ ‖λR(λ;A)(v − vn)‖+ ‖λR(λ;A)vn − vn‖+ ‖vn − v‖
≤ 2‖vn − v‖+ ‖λvn − vn‖,

and this tend to zero as n→∞ and then λ→∞. Now, the result follows and this
concludes the proof. 2

In the sequel, we define a sequence of bounded linear operators on X called Yosida
approximations, which approximate the operator A.

Definition 3.7. For λ > 0, the Yosida approximation Aλ of A is defined by

Aλ := λAR(λ;A) = λ2R(λ;A)− λI.

Lemma 3.3. For v ∈ D(A), there holds

lim
λ→∞

Aλv = Av.

Proof. Using the definition of Yosida approximation and Lemma 3.2, we note that for
v ∈ D(A)

lim
λ→∞

Aλv = lim
λ→∞

λAR(λ;A)v = lim
λ→∞

λR(λ;A)Av = Av.

This concludes the proof. 2

Lemma 3.4. The Yosida approximation Aλ is the infinitesimal generator of a uniformly
continuous semigroup {Eλ(t) := etAλ} of contraction and for λ, µ > 0

‖Eλ(t)v − Eµ(t)v‖ = ‖etAλv − etAµv‖ ≤ t‖Aλv −Aµv‖, t ≥ 0.

Proof. From the definition of Yosida approximation

‖etAλ‖ = e−λt‖e(tλ2R(λ;A))‖ ≤ e−λt e(tλ2‖R(λ;A)‖) ≤ e−λt eλt = 1,

and it is a contraction.

13



For λ, µ > 0, the resolvent operators R(λ;A) and R(µ;A) commute, so also Yosida
approximations Aλ,Aµ and the corresponding semigroups Eλ(t), Eµ(t). Note that

Aµ Eλ(t) = Eλ(t)Aµ

and for v ∈ X, using semigroup property

d

dt
Eλ(t)v = AλEλ(t)v = Eλ(t)Aλv.

Then for v ∈ X,

Eλ(t)v − Eµ(t)v =

∫ t

0

d

ds

(
Eµ(t− s)Eλ(s)v

)
ds

=

∫ t

0
Eµ(t− s)Eλ(s)

(
Aµv −Aλv

)
ds,

and hence,

‖Eλ(t)v − Eµ(t)v‖ ≤
∫ t

0
‖Eµ(t− s)‖ ‖Eλ(s)‖ ‖Aµv −Aλv‖ ds ≤ t‖Aµv −Aλv‖,

and this completes rest of the proof. 2

Proof of Theorem 3.5.
Necessary Condition. Assume that A is the infinitesimal generator of a C0- semigroup
E(t) of contraction. We now claim that (i)-(ii) hold. As a consequence of Theorem 3.2,
the condition (i) is easy to show. Now for (ii), we apply the proof of Lemma 3.1 (ii) to
conclude the result.
Sufficient Condition. Assuming (i)-(ii) to hold for the linear operator A, we show that it
generates a C0- semigroup E(t) of contraction. From A, we now construct Yosida
approximations for λ > 0 as Aλ. Since each Aλ is bounded linear operator on X, it
generates uniformly continuous semigroup Eλ(t)t≥t≥0 = etAλ .
From Lemma 3.4, we note that as λ, µ→∞,

‖Eλ(t)v − Eµ(t)v‖ ≤ t‖Aλv −Aµv‖, t ≥ 0.

tends to zero. Hence, we define, E(t)v as

E(t)v = lim
λ→∞

Eλ(t)v, t ≥ 0, v ∈ D(A) (3.20)

Observe that E(t)v exists for all v ∈ D(A) and for t ≥ 0. Since ‖Eλ(t)‖ ≤ 1, using
denseness property of D(A) in X, it follows that (3.20) holds for all v ∈ D(A), uniformly
for t on compact subsets of [0,∞). Now it is easy to verify that E(t) is a C0-semigroup of
contraction.
To complete the rest of the proof, it remains to show that given linear operator A is the
infinitesimal generator of E(t). Write the generator of E(t) as the operator B, that is, to
show that B = A.
Observe that

Eλ(t)v − v =

∫ t

0
Eλ(s)Aλv ds, (3.21)
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and for v ∈ D(A) with the help of Lemmas 3.3-3.4

‖Eλ(s)Aλv − E(s)Av‖ ≤ ‖Eλ(s)‖ ‖Aλv −Av‖+ ‖(Eλ(s)− E(s))Av‖ −→ 0

as λ→∞. Hence, passing limit in (3.21) as λ→∞, we arrive at for v ∈ D(A)

E(t)v − v =

∫ t

0
E(s)Av ds,

and thus, D(A) ⊆ D(B). Note that for v ∈ D(A)

Bv = lim
t→0+

E(t)v − v
t

= Av.

Since ρ(A) ⊃ (0,∞), 1 ∈ ρ(A) and hence,

(I −B)(D(A)) = (I −A)(D(A)) = X.

Therefore, by the necessity part of the theorem, it follows that 1 ∈ ρ(B), and

D(B) = (I −B)−1X = D(B)

proving that A = B. This concludes the proof. 2

Remark 3.2. We can state a general Hille-Yosida Theorem with out proof. For a proof,
one can check Pazy [3].

Theorem 3.8 (Hille-Yosida Theorem). A linear operator A on X with D(A) ⊂ X is the
infinitesimal generator of a C0-semigroup E(t) with ‖E(t)‖ ≤Meωt, for some M ≥ 1 and
for some real ω if and only if

(i) A is closed and D(A) is dense in X.

(ii) ρ(A) ⊃ (ω,∞) and ‖R(λ;A)‖ ≤ M
(λ−ω)n for λ > ω, n ≥ 1.

When A ∈ BL(X), then we write an exponential formula for the semigroup. Then, one is
curious to know ‘ If A is unbounded linear operator, whether it is possible to write an
exponential formula for the semigroup whose infinitesimal generator is A. Obviously, the
exponential formula given through the infinite sum will land in difficulties and on the
other hand

E(t)v := lim
λ→∞

etAλv, t ≥ 0.

Therefore, one way to attach a meaning it through the expression

E(t)v := lim
n→∞

(
I − t

n
A
)−n

v = lim
n→∞

(n
t
R(
n

t
;A)

)n
v.

For a proof, see pp. 184-185 of Kesavan [2]
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3.3 Lumer-Phillips Theorem

When X is a Hilbert space with innerproduct (·, ·), we have easily verifiable conditions on
the linear operator A which generates C0-semigroup of contraction.

Definition 3.9. An operator A : D(A) ⊂ X −→ X is said to be dissipative if

<e(Au, u) ≤ 0, for all u ∈ D(A).

Below, we state without proof the Lumer-Phillips Theorem. For a proof, see, Pazy[3].

Theorem 3.10 (Lumer Phillips Theorem ). Let A : D(A) ⊂ X −→ X be a densely
defined operator.

(i) If A is dissipative and range of (λ0I −A) is the whole of X for at least one λ0 > 0,
then A generates a C0-semigroup E(t) of contractions.

(ii) If A is the infinitesimal generator of C0-semigroup E(t) of contractions, then range
of (λI −A) is the whole of X for all λ > 0 and A is dissipative.

3.4 Analytic Semigroups.

Often, we shall be using the definition of an analytic semigroup or the operator A being
sectorial on X. Therefore, in this subsection, a part from the definition, we discuss some
properties of analytic semigroup.
An operator A : D(A) ⊂ X → X is called sectorial operator on X, if A is densely defined
closed operator on X, whose resolvent R(z;A) is analytic in a sector :

Σδ := {z 6= 0 : | arg z| < δ with δ ∈ (
π

2
, π)},

and bounded by

‖R(z;A)‖ ≤ M

|λ|
∀z ∈ Σδ, for some M > 0, δ ∈ (

π

2
, π). (3.22)

The semigroup E(t) generated by the generator A is called an analytic semigroup.
Note that ( see, Pazy [3])

E(t) =
1

2πi

∫
Γ
etz R(z;A) dz (3.23)

where the contour Γ may be taken as a suitable path in Σd from ∞e−iψ to ∞eiψ for
ψ ∈ (π2 , δ), that is,

Γ = {z : arg z| = ψ ∈ (
π

2
, δ)}.

Observe that on differentiating (3.23), we obtain

E′(t) =
1

2πi

∫
Γ
z etz R(z;A) dz, (3.24)

and hence,

‖E′(t)‖ ≤ 1

2πi

∫
Γ
|z|e−t<ez||R(z;A)|dz| (3.25)

≤ K
∫ ∞

0
e−ct ds =

K

t
.

Note that

‖E(t)‖+ t‖E′(t)‖ ≤ K. (3.26)

16



3.5 Nonhomogeneous Evolution Equations.

In this subsection, we shall discuss the non-homogeneous abstract evolution equations.
Given the infinitesimal generator A of a C0-semigroup {E(t)}t≥0 on a Banach space X
with domain D(A) ⊂ X, a function u0 ∈ X and a mapping f : [0, T ] −→ X, consider the
following non-homogeneous abstract evolution problem:

du

dt
= Au+ f, t ≥ 0, (3.27)

u(0) = u0. (3.28)

4 Applications.

In this section, we shall discuss some applications to evolution equations.

Example 4.1. Consider the 1st order linear PDE with Cauchy data:

∂u

∂t
=

∂u

∂x
, t > 0, x ∈ R, (4.29)

u(0) = v, x ∈ R.

With X = L2(R), choose Aϕ = dϕ
dx with its domain D(A) = H1(R). Then,

(Aϕ,ϕ) = (ϕ′, ϕ) = −(ϕ,ϕ′) = −(ϕ′, ϕ) = −(Aϕ,ϕ). Thus <e(Aϕ,ϕ) = 0 and the
operator A is dissipative. Now we claim that the Range of (λI −A) is X, that is, for given
f ∈ L2(R), there is a unique solution of

λϕ− ϕ′ = f, λ > 0.

Note that using integrating factor, it follows that

−(e−λxϕ)′ = (e−λxf(x)

and on integrating from −∞ to x, we arrive at

ϕ(x) =

∫ x

−∞
eλ(x−s)f(s) ds.

Thus, for λ > 0, the Range of (λI −A) is the whole of X = L2(R).
Therefore, A generates a C0-semigroup of contraction E(t) and u(t) = E(t)v. This also
establish the solvability of (4.29). In this case, it is easy to write down E(t)v explicitly as
E(t)v(x) = v(x− t).

Observe that it is not easy to verify the conditions specially the condition (ii) of the
Hille-Yosida Theorem.

Example 4.2. Consider

ut = ∆u, t > 0, x ∈ Rd (4.30)

u(x, 0) = v(x), x ∈ Rd,

To discuss its solvability, choose X = L2(R) and A = ∆, with its domain D(A) = H2(Rd).
With t −→ u(t) ∈ X, we can write (4.30) in abstract form as in (1.17). Now for ϕ ∈ D(A),

(Aϕ,ϕ) = (∆ϕ,ϕ) = −||∇ϕ||2 ≤ 0,
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so that the operator A is dissipative. We claim that for λ > 0 the Range of (λI −A) is the
whole of L2(Rd). For f ∈ L2(Rd), consider the problem :

λu−∆u = f, x ∈ (Rd), λ > 0. (4.31)

Note that
(∇u,∇χ) + λ(u, χ) = (f, χ) ∀χ ∈ H1(Rd).

By Lax- Milgram Theorem, the above problem has a unique solution u ∈ H1(Rd) for a
given f ∈ L2(Rd). More over using Fourier tranform and Plancheral’s identity, we can
show that (4.31) has a unique solution u ∈ H2(Rd) for f ∈ L2(Rd). Hence,

Range (λI −A) = L2(Rd),

and A generates C0-semigroup of contraction. Moreover, it completes the solvability of
the abstract problem. Here, using Fourier transform, one can write the semigroup as

E(t)v(x) :=
1

(4πt)d/2

∫
Rd
e−|x−y|

2/4tv(y) dy.

If v has compact support, then u(x, t) = E(t)v(x) is non-zero for all x ∈ Rd, when t > 0.
This is known as infinite speed of propagation of solution. We now observe that when v
has a compact support, then u(x, t) −→ 0 exponentially as |x| −→ ∞. Therefore, the effect
at large distances although nonzero is negligible.

Example 4.3. consider the Schrodinger equation:

ut = i∆u, t > 0, x ∈ Rd (4.32)

with initial condition u(0) = v. With X = L2(Rd), set Aϕ = i∆ϕ and D(A) = H2(Rd). In
order to apply the Lumer-Phillip’s theorem, we need to check the A is dissipative, that is,
for v ∈ D(A),

(Av, v) = −i‖∇v‖2,

and
<e(Av, v) = 0.

Therefore, it remains to show Range (λI −A) = L2(Rd), u ∈ D(A), λ > 0. Now for
f ∈ L2(Rd), we need to find a unique solution v ∈ H2(Rd) of the problem:

λv − i∆v = f.

As has been done earlier, we apply the Lax-Milgram Lemma to infer the existence of a
unique solution v ∈ H1(Rd) and use Fourier transformation technique to infer that
v ∈ H2(Rd). This completes the rest of the proof.

Example 4.4. Let X be a Hilbert space with inner-product (·, ·) with norm ‖ · ‖.
Consider the abstract evolution equation :

du

dt
=Au, t > 0, (4.33)

u(0) =v,
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where A : D(A) ⊂ X −→ X, v ∈ X and the map t −→ u(t) ∈ X. Here, we assume that −A
is self-adjoint, positive definite linear operator with compact inverse. Therefore, there is an
orthonormal basis of eigen-functions {ϕj}∞j=1 and corresponding eigenvalues {λj}∞j=1 with

0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ . . . with λj −→∞.

Hence, for any w ∈ X, there holds generalized Fourier expansion

w =
∞∑
j=1

(w,ϕj)ϕj and −Aw =
∞∑
j=1

λj(w,ϕj)ϕj .

Setting

u(t) :=
∞∑
j=1

uj(t)ϕj ,

where the generalized Fourier coefficient uj(t) is given by uj(t) = (u(t), ϕj). Forming
inner-product between (4.33) and ϕj yields infinite number of scalar ODEs:

duj
dt

+ λjuj = 0, t > 0 with uj(0) = vj , (4.34)

where vj = (v, ϕj). On solving, we obtain

uj(t) = e−λjt vj ,

and hence,

u(t) = E(t)v :=

∞∑
j=1

e−λjt(v, ϕj)ϕj .

This is a C0 semigroup as per the Lumer-Phillips Theorem and we note that by Parseval’s
identity

‖E(t)v‖2 =
∞∑
j=1

e−2λjt(v, ϕj)
2 (4.35)

≤ e−λ1t
∞∑
j=1

(v, ϕj)
2 = e−λ1t‖v‖2 ≤ ‖v‖2. (4.36)

Hence, it is a C0-semigroup of contraction. Further, observe that

E′(t)v = AE(t)v = −
∞∑
j=1

λje
−tλj (v, ϕj)Φj ,

and hence,

‖E′(t)v‖2 =
∞∑
j=1

λ2
je
−2tλj (c, Φj)

2

≤ sup
j

(λ2
j t

2e−2tλj )
1

t2

∞∑
j=1

(v, ϕj)
2.
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With C2 = supj(λ
2
j t

2e−2tλj ), we now arrive at

‖E′(t)v‖ ≤ C

t
‖v‖, (4.37)

and this is called smoothing property as

‖E′(t)v‖ = ‖AE(t)v‖ = ‖Au(t)‖ ≤ C

t
‖v‖.

In this case, the resolvent operator R(z;A)v has the representation as

R(z;A)v = (zI −A)−1v =
∞∑
j=1

( 1

z + λj

)
(v, ϕj)ϕj .

Now if z ∈ Σδ, δ ∈ (π/2, π), then we obtain

‖R(z;A)‖ = sup
j

1

|z + λj |
≤ C

|z|
, (4.38)

as |z + λj | ≥ |z|, if <ez ≥ 0, and if <ez < 0, the it is greater than |=z| ≥ (sin δ)−1|z|.
Therefore, A is sectorial and {E(t)} is an analytic semi-group.
To provide an concrete example, consider the following linear parabolic problem: Find
u = u(x, t) such that

∂u

∂t
= Au, x ∈ Ω, t > 0, (4.39)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (4.40)

u(x, 0) = v, x ∈ Ω, (4.41)

where Ω ⊂ Rd is a bounded domain with smooth boundary ∂Ω and the operator A is
defined as

−Aφ := −
d∑

j,k=1

∂

∂xj

(
ajk

∂φ

∂xk

)
+

d∑
j=1

bj
∂φ

∂xj
+ a0φ. (4.42)

Assume that

• the coefficients ajk, bj , a0 are smooth and bounded with ajk = akj , ∇ · b = 0 and
a0 > 0, where b = (b1, · · · , bd).

• the operator −A is uniformly elliptic, that is, there exists α0 > 0 such that

d∑
k=1

d∑
j=1

ajkξj ξk ≥ α0|ξ|2, 0 6= ξ ∈ Rd.

With X = L2(Ω) with innerproduct (·, ·) and D(A) = H2(Ω) ∩H1
0 (Ω), we note that

(−Aφ, φ) ≥ α0‖φ‖2H1
0 (Ω) for all φ ∈ H1

0 (Ω). (4.43)

Observe that D(A) is dense in X and from (4.43), it follows that A is dissipative.
Moreover, we need to verify that for a fixed λ0 > 0, the Range of (λ0 −A) = X, that is,
for fixed λ0 > 0 and f ∈ X = L2(Ω), the following elliptic problem:

−Aw + λ0w = f in Ω,

w = 0 on ∂Ω
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has a unique solution w ∈ D(A) := H2(Ω) ∩H1
0 (Ω). Using the Lax-Milgram Lemma, it is

easy to check since −A satisfies coercivity (4.43) condition that the unique weak solution
w ∈ H1

0 (Ω). Then by elliptic regularity, it follows that w ∈ H2(Ω) ∩H1
0 (Ω) and hence, an

application of Lummer-Phillips Theorem yields the existence of C0-semigroup E(t) of
contraction,whose generator is A and the resolvent operator R(λ;A) satisfies

‖R(λ;A)‖ ≤ 1

λ
, λ > 0.

It can be shown that E(t) generates an analytic semigroup on X = L2(Ω).
If bj = 0, j = 1, · · · , d, the corresponding operator −A is self-adjoint, that is,

(−Aφ,ψ) = (φ,−Aψ) ∀φ, ψ ∈ D(A),

and positive definite. Moreover, −A has a compact inverse, which can be checked from the
elliptic theory, see, [2] and [1]. So we can have a countable eigen-values {λj}∞j=1 with
λj+1 ≥ λj ≥ · · · > λ1 > 0 and the corresponding eigenvectors {ϕj}∞j=1 forms an
orthonormal basis of X. Therefore, using generalized Fourier expansion, it follows that

u(x, t) = E(t)v :=

∞∑
j=1

e−tλj (v, ϕj)ϕj .

Problem 4.1. Show that the solution decays exponentially.

Example 4.5. Second Order Hyperbolic Equations. Consider u(x, t) satisfying

utt = Lu in Ω× (0,∞), (4.44)

u(x, t) = 0 on ∂Ω× (0,∞), (4.45)

u(x, 0) = g, ut(x, 0) = h in Ω, (4.46)

where Ω is a bounded domain in Rd with smooth boundary ∂Ω and the operator A is
given by

−Lφ := −
d∑

j,k=1

∂

∂xj

(
ajk

∂φ

∂xk

)
+ a0φ. (4.47)

Assume that

• the coefficients ajk, bj , a0 are smooth and bounded with ajk = akj and a0 > 0.

• the operator −L is uniformly elliptic, that is, there exists α0 > 0 such that

d∑
k=1

d∑
j=1

ajkξj ξk ≥ α0|ξ|2, 0 6= ξ ∈ Rd.

In order to put into a first order system, set v = ut and rewrite (4.44) as a system:

ut = v, vt = Lu in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = g, v(x, 0) = h in Ω.
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Note that the following coercivity condition is satisfied: there exists a positive constant α0

such that
(−Lφ, φ) ≥ α0‖φ‖2H1

0 (Ω) for allφ ∈ H1
0 (Ω). (4.48)

Now define X as a product space:

X = H1
0 (Ω)× L2(Ω)

with norm ‖(φ, ψ)‖ =
(
a(φ, φ) + ‖v‖2

)1/2
, where a(·, ·) is a bilinear form associated with

the operator −A given by

(−Lφ, χ) := a(φ, χ) =:
d∑

j,k=1

∫
Ω
ajk

∂φ

∂xk

∂χ

∂xj
dx+

∫
Ω
a0φ χ dx.

Note that t −→ (u(t), v(t)) ∈ X and we define operator A on the product space X as

A(u, v) = (v,−Lu) (4.49)

with the domain of A is given by

D(A) = H2(Ω) ∩H1
0 (Ω)×H1

0 (Ω).

It is easy to check that D(A) is dense in X. It is left to the reader to verify that A is
closed. Note that for (u, v) ∈ D(A)

(A(u, v), (u, v)) = a(v, u) + (−Lu, v) = a(v, u)− a(u, v) = 0

as a(·, ·) is symmetric and this implies that A is dissipative. Now for λ > 0, it remains to
show that the Range of (λI −A) is X, that is, for any (f1, f2) ∈ X, the operator equation:

λ(u, v)−A(u, v) = (f1, f2)

has a unique solution (u, v) ∈ D(A). Equivalently, the following two equations:

λu− v = f1 and λv + Lu = f2 (4.50)

have a pair of solution (u, v) ∈ D(A). On adding these two equations, it follows that

λ2u+ Lu = λf1 + f2. (4.51)

Since λ1f1 + f2 ∈ L2(Ω) and λ2 > 0, we obtain from Lax-Milgram Lemma and elliptic
regularity theory that, there exists a unique solution u ∈ H2(Ω) ∩H1

0 (Ω) to the problem
(4.51). Since from (4.50), we obtain: v = u− λf1 ∈ H1

0 (Ω). Thus, we have shown that
(4.50) has a unique solution (u, v) ∈ D(A), for (f1, f2) ∈ X which implies that the Range
of (λI −A) is X. Now an application of the Lumer-Phillips theorem yields the existence of
C0 semigroup E(t) of contraction.
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